首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

2.
Wastewaters generated during mining and processing of metal sulfide ores are often acidic (pH < 3) and can contain significant concentrations of nitrate, nitrite, and ammonium from nitrogen based explosives. In addition, wastewaters from sulfide ore treatment plants and tailings ponds typically contain large amounts of inorganic sulfur compounds, such as thiosulfate and tetrathionate. Release of these wastewaters can lead to environmental acidification as well as an increase in nutrients (eutrophication) and compounds that are potentially toxic to humans and animals. Waters from cyanidation plants for gold extraction will often conjointly include toxic, sulfur containing thiocyanate. More stringent regulatory limits on the release of mining wastes containing compounds such as inorganic sulfur compounds, nitrate, and thiocyanate, along the need to increase production from sulfide mineral mining calls for low cost techniques to remove these pollutants under ambient temperatures (approximately 8 °C). In this study, we used both aerobic and anaerobic continuous cultures to successfully couple inorganic sulfur compound (i.e. thiosulfate and thiocyanate) oxidation for the removal of nitrogenous compounds under neutral to acidic pH at the low temperatures typical for boreal climates. Furthermore, the development of the respective microbial communities was identified over time by DNA sequencing, and found to contain a consortium including populations aligning within Flavobacterium, Thiobacillus, and Comamonadaceae lineages. This is the first study to remediate mining waste waters by coupling autotrophic thiocyanate oxidation to nitrate reduction at low temperatures and acidic pH by means of an identified microbial community.  相似文献   

3.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

4.
Sorokin DIu 《Mikrobiologiia》2003,72(6):725-739
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some of denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

5.
Thiobacillus thiooxidans was grown at pH 5 on thiosulfate as an energy source, and the mechanism of oxidation of inorganic sulfur compounds was studied by the effect of inhibitors, stoichiometries of oxygen consumption and sulfur, sulfite, or tetrathionate accumulation, and cytochrome reduction by substrates. Both intact cells and cell-free extracts were used in the study. The results are consistent with the pathway with sulfur and sulfite as the key intermediates. Thiosulfate was oxidized after cleavage to sulfur and sulfite as intermediates at pH 5, the optimal growth pH on thiosulfate, but after initial condensation to tetrathionate at pH 2.3 where the organism failed to grow. N-Ethylmaleimide (NEM) inhibited sulfur oxidation directly and the oxidation of thiosulfate or tetrathionate indirectly. It did not inhibit the sulfite oxidation by cells, but inhibited any reduction of cell cytochromes by sulfur, thiosulfate, tetrathionate, and sulfite. NEM probably binds sulfhydryl groups, which are possibly essential in supplying electrons to initiate sulfur oxidation. 2-Heptyl-4-hydroxy-quinoline N-oxide (HQNO) inhibited the oxidation of sulfite directly and that of sulfur, thiosulfate, and tetrathionate indirectly. Uncouplers, carbonyl cyanide-m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNP), inhibited sulfite oxidation by cells, but not the oxidation by extracts, while HQNO inhibited both. It is proposed that HQNO inhibits the oxidation of sulfite at the cytochrome b site both in cells and extracts, but uncouplers inhibit the oxidation in cells only by collapsing the energized state of cells, delta muH+, required either for electron transfer from cytochrome c to b or for sulfite binding.  相似文献   

6.
Thiosulfate oxidation and mixotrophic growth with succinate or methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium oryzae CBMB20, which was recently characterized and reported as a novel species isolated from rice. Methylobacterium oryzae was able to utilize thiosulfate in the presence of sulfate. Thiosulfate oxidation increased the protein yield by 25% in mixotrophic medium containing 18.5 mmol.L-1 of sodium succinate and 20 mmol.L-1 of sodium thiosulfate on day 5. The respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfur and sulfite. Thiosulfate was predominantly oxidized to sulfate and intermediate products of thiosulfate oxidation, such as tetrathionate, trithionate, polythionate, and sulfur, were not detected in spent medium. It indicated that bacterium use the non-S4 intermediate sulfur oxidation pathway for thiosulfate oxidation. Thiosulfate oxidation enzymes, such as rhodanese and sulfite oxidase activities appeared to be constitutively expressed, but activity increased during growth on thiosulfate. No thiosulfate oxidase (tetrathionate synthase) activity was detected.  相似文献   

7.
Abstract The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen-limiting conditions, sulfide was partially oxidized to zerovalent sulfur (75%) and thiosulfate (17%). In addition, low concentrations of tetrathionate and polysulfide were detected. The finding of in vivo thiosulfate formation supports the discredited observations of thiosulfate formation in cell free extracts in the early sixties. In a microbial mat most sulfide oxidation was shown to take place under oxygen-limiting conditions. It is suggested that zerovalent sulfur formation by thiobacilli is a major process resulting in polysulfide accumulation. Implications for the competition between colorless sulfur bacteria and purple sulfur bacteria are discussed.  相似文献   

8.
Factors Affecting Oxidation of Thiosalts by Thiobacilli   总被引:1,自引:1,他引:0       下载免费PDF全文
The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu.  相似文献   

9.
A new pathway of dimethylsulfide (DMS) metabolism was identified in a novel species of Gammaproteobacteria, Methylophaga thiooxidans sp. nov., in which tetrathionate (S4O62?) was the end‐product of DMS oxidation. Inhibitor evidence indicated that DMS degradation was initiated by demethylation, catalysed by a corrinoid demethylase. Thiosulfate was an intermediate, which was oxidized to tetrathionate by a cytochrome‐linked thiosulfate dehydrogenase. Thiosulfate oxidation was coupled to ATP synthesis, and M. thiooxidans could also use exogenous thiosulfate as an energy source during chemolithoheterotrophic growth on DMS or methanol. Cultures grown on a variety of substrates oxidized thiosulfate, indicating that thiosulfate oxidation was constitutive. The observations have relevance to interactions among sulfur‐metabolizing bacteria in the marine environment. The production of tetrathionate from an organosulfur precursor is previously undocumented and represents a potential step in the biogeochemical sulfur cycle, providing a ‘shunt’ across the cycle.  相似文献   

10.
THREE STRAINS, SELECTED FROM A LARGE NUMBER OF NEWLY ISOLATED, FACULTATIVELY ANAEROBIC MARINE BACTERIA, REDUCED INORGANIC SULFUR COMPOUNDS OTHER THAN SULFATE ANAEROBICALLY IN DEFINED CULTURE MEDIA IN THE FOLLOWING DIFFERENT PATTERNS: (i) sulfite and thiosulfate were reduced to sulfide, and tetrathionate was reduced to thiosulfate; (ii) tetrathionate was reduced to thiosulfate only; or (iii) thiosulfate was reduced to sulfide only when pyruvate was the substrate. Comparison of anaerobic growth in the presence or absence of inorganic sulfur compounds indicated true dissimilatory reductions.  相似文献   

11.
Activation of bovine plasminogen by Streptococcus uberis   总被引:3,自引:0,他引:3  
Abstract Thiosulfate and tetrathionate oxidation activity of Thiobacillus ferrooxidans were found to be absent in iron-growth cell as well as in the cells grown anaerobically on elemental sulfur. While the thiosulfate oxidase activity was absent in the cell-free extract of the above cells, the activity of rhodanese was present irrespective of the culture condition of T. ferrooxidans . It is thus conceivable that rhodanese is not involved in thiosulfate metabolism. During growth in presence of ferrous sulfate plus elemental sulfur, the thiosulfate/tetrathionate oxidation activity was absent till the oxidation of ferrous iron was complete and the cells harvested only in the latter period acquired the thiosulfate/tetrathionate oxidation activity. Thus it becomes evident that the inhibition of thiosulfate and tetrathionate oxidation is solely due to presence of ferrous iron.  相似文献   

12.
Abstract Thiobacillus caldus is a moderately thermophilic acidophile which has been implicated in the biooxidation of arsenic containing mineral Sulfides. The toxic effects of arsenic on this bacterium are presented here. Addition of arsenite to a growing culture of T. caldus caused a transient increase in the optical density of the culture while causing a simultaneous decrease in cell viability. The increase in optical density was shown to be due to the formation of extracellular sulfur. The oxidation rates of tetrathionate and thiosulfate were decreased by increasing concentrations of arsenite, while in a culture induced to arsenic resistance the rates were not as adversely effected. Sulfur oxidation was also inhibited to the same extent as tetrathionate oxidation, with the oxidation of solid sulfur being slightly more effected than the oxidation of sulfur dissolved in acetone. Thus, bactericidal arsenite causes a transient formation of extracellular sulfur in the culture supernatant of T. caldus yet the toxicity of arsenite is not due to direct inhibitory effects on reduced inorganic sulfur compound oxidation by these bacteria.  相似文献   

13.
Pseudomonas aeruginosa was grown on a succinate-basal salts medium supplemented with various inorganic sulfur compounds as its sole source of sulfur. The organism was able to grow on the sodium salts of sulfide, thiosulfate, tetrathionate, dithionite, metabisulfite, sulfite, or sulfate, but not on those of dithionate. Analyses of the culture media after 24 h of growth indicated accumulation of sulfate from each inorganic sulfur source except sulfate. Manometric studies with resting cells obtained by growth on each of these sulfur sources yielded net oxygen uptake for all substrates except sulfite and dithionate. Similar results were obtained with extracts from these cells by spectrophotometric techniques. Thiosulfate oxidase activity appeared to be induced by growth on sulfide, thiosulfate, or tetrathionate, with little or no activity observed when cells were grown on inorganic sulfur sources of higher oxidative states. Metabisulfite oxidase appeared to be associated with growth on all inorganic sulfur compounds. Rhodanese activity appeared to be constitutively present, and its activity, observed only in soluble fraction, seemed independent of the growth medium employed. Thiosulfate and tetrathionate oxidase activities were studied in greater detail than some of the other sulfur oxidases, and both were found to be distributed between particulate and soluble fractions.  相似文献   

14.
An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters and for simultaneous removal of sulfide or thiosulfate and nitrate. A suspended culture of sulfur-utilizing denitrifying bacteria was fast and efficiently established by bio-augmentation of activated sludge with Thiobacillus denitrificans. The stoichiometry of the process and the key factors, i.e. N/S ratio, that enable combined sulfide and nitrogen removal, were determined. An optimum N/S ratio of 1 (100% nitrate removal without nitrite formation and low thiosulfate concentrations in the effluent) has been obtained during reactor operation with thiosulfate at a nitrate loading rate (NLR) of 17.18 mmol N L(-1) d(-1). Complete nitrate and sulfide removal was achieved during reactor operation with sulfide at a NLR of 7.96 mmol N L(-1) d(-1) and at N/S ratio between 0.8 and 0.9, with oxidation of sulfide to sulfate. Complete nitrate removal while working at nitrate limiting conditions could be achieved by sulfide oxidation with low amounts of oxygen present in the influent, which kept the sulfide concentration below inhibitory levels.  相似文献   

15.
Levels of thiosulfate-oxidizing enzyme (TSO) and tetrathionate reductase (TTR) were measured in washed cell suspensions of a heterotrophic marine thiosulfate-oxidizing bacterium, strain 16B. TSO activity remained virtually constant in aerobically and anaerobically grown cells and was unaffected by the presence or absence of thiosulfate and tetrathionate in the growth medium. TTR was also present in cells grown aerobically and anaerobically, but its activity was threefold greater in cells cultured in media containing tetrathionate or thiosulfate. Tetrathionate appears to be the inducer of increased TTR activity in both aerobically and anaerobically grown cells. TTR (constitutive or induced) and TSO have different pH and temperature optima. Both TTR activities were unaffected by 10 mM KCN, which reversed oxygen inhibition of tetrathionate reduction. TSO was partially inhibited by 5 μM KCN and completely inhibited by 90 μM KCN. These findings and results of experiments to determine the influence of several inorganic electron donors and acceptors on TSO and TTR activities suggest that constitutive TSO and TTR represent reverse activities of the same enzyme, whereas inducible TTR is a separate enzyme used by strain 16B only for anaerobic respiration of tetrathionate. The bacterium appears well adapted to growth in environments characterized by low oxygen tension, dilute organic carbon concentrations, and the presence of a variety of reduced, inorganic sulfur compounds.  相似文献   

16.
Sulfur Chemistry in Bacterial Leaching of Pyrite   总被引:7,自引:2,他引:5       下载免费PDF全文
In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amounts of elemental sulfur were detectable because of the organism's capacity to oxidize sulfur compounds. In the course of oxidative, chemical pyrite degradation under alkaline conditions, the accumulation of tetrathionate, trithionate, and thiosulfate occurred. The data indicate that thiosulfate, trithionate, tetrathionate, and disulfane-monosulfonic acid are key intermediate sulfur compounds in oxidative pyrite degradation. A novel (cyclic) leaching mechanism is proposed which basically is indirect.  相似文献   

17.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

18.
The SoxXAYZB(CD)2‐mediated pathway of bacterial sulfur‐chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock‐out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate‐to‐tetrathionate conversion is Sox independent. Expression of two glutathione metabolism‐related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate‐dependent oxygen consumption pattern of whole cells, and sulfur‐oxidizing enzyme activities of cell‐free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3‐ and 10‐fold during thiosulfate‐to‐tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock‐out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S‐thiosulfate to tetrathionate. Knock‐out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ~ 20 mM S‐thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ‐dependent thiosulfate dehydrogenation, whereas its PQQ‐independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.  相似文献   

19.
M. I. H. Aleem 《Plant and Soil》1975,43(1-3):587-607
Summary Aspects of the biochemistry of the oxidation of inorganic sulfur compounds are discussed in thiobacilli but chiefly inThiobacillus denitrificans. Almost all of the thiobacilli (e.g. T. denitrificans, T. neapolitanus, T. novellus, andThiobacillus A 2) were capable of producing approximately 7.5 moles of sulfuric acid aerobically from 3.75 moles of thiosulfate per gram of cellular protein per hr. By far the most prolific producer of sulfuric acid (or sulfates) from the anaerobic thiosulfate oxidation with nitrates wasT. denitrificans which was capable of producing 15 moles of sulfates from 7.5 moles of thiosulfate with concomitant reduction of 12 moles of nitrate resulting in the evolution of 6 moles of nitrogen gas/g protein/hr. The oxidation of sulfide was mediated by the flavo-protein system and cytochromes ofb, c, o, anda-type. This process was sensitive to flavoprotein inhibitors, antimycin A, and cyanide. The aerobic thiosulfate oxidation on the other hand involved cytochromec : O2 oxidoreductase region of the electron transport chain and was sensitive to cyanide only. The anaerobic oxidation of thiosulfate byT. denitrificans, however, was severely inhibited by the flavoprotein inhibitors because of the splitting of the thiosulfate molecule into the sulfide and sulfite moieties produced by the thiosulfate-reductase. Accumulation of tetrathionate and to a small extent trithionate and pentathionate occurred during anaerobic growth ofT. denitrificans. These polythionates were subsequently oxidized to sulfate with the concomitant reduction of nitrate to N2. Intact cell suspensions catalyzed the complete oxidation of sulfide, thiosulfate, tetrathionate, and sulfite to sulfate with the stoichiometric reduction of nitrate, nitrite, nitric oxide, and nitrous oxide to nitrogen gas thus indicating that NO2 , NO, and N2O are the possible intermediates in the denitrification of nitrate. This process was mediated by the cytochrome electron transport chain and was sensitive to the electron transfer inhibitors. The oxidation of sulfite involved cytochrome-linked sulfite oxidase as well as the APS-reductase pathways. The latter was absent inT. novellus andThiobacillus A 2. In all of the thiobacilli the inner as well as the outer sulfur atoms of thiosulfate were oxidized at approximately the same rate by intact cells. The sulfide oxidation occurred in two stages: (a) a cellular-membrane-associated initial and rapid oxidation reaction which was dependent upon sulfide concentration, and (b) a slower oxidation reaction stage catalyzed by the cellfree extracts, probably involving polysulfides. InT. novellus andT. neapolitanus the oxidation of inorganic sulfur compounds is coupled to energy generation through oxidative phosphorylation, however, the reduction of pyridine nucleotides by sulfur compounds involved an energy-linked reversal of electron transfer. Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974. Summary already inserted on p. 189 of the present volume.  相似文献   

20.
The growth of Thiobacillus (T.) intermedius strain K12 and Thiobacillus versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis. Most results indicate that T. intermedius oxidized thiosulfate via tetrathionate to sulfate. Concomittantly, sulfur compound intermediates like triand pentathionate were detectable. The formation is probably the result of highly reactive sulfane monosulfonic acids. The formation of tetrathionate allows the cells to buffer temporarily the proton excretion from sulfuric acid production. With T. versutus intermediate sulfur compounds were not detectable, however, sulfur was detectable. The possibility of a thiosulfate oxidation via dithionate, S2O inf6 sup2- , is discussed. The on-line measurement of metabolic activity by microcalorimetry enabled us to detect that cells of T. intermedius adhere to surfaces and produce a biofilm by a metabolic process whereas those of T. versutus fail to do so. The importance of the finding is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号