首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels.  相似文献   

2.
3.
Bacterial microcompartments (BMCs) are large intracellular bodies that serve as simple organelles in many bacteria. They are proteinaceous structures composed of key enzymes encapsulated by a polyhedral protein shell. In previous studies, the organization of these large shells has been inferred from the conserved packing of the component shell proteins in two‐dimensional (2D) layers within the context of three‐dimensional (3D) crystals. Here, we show that well‐ordered, 2D crystals of carboxysome shell proteins assemble spontaneously when His‐tagged proteins bind to a monolayer of nickelated lipid molecules at an air–water interface. The molecular packing within the 2D crystals recapitulates the layered hexagonal sheets observed in 3D crystals. The results reinforce current models for the molecular design of BMC shells.  相似文献   

4.
Carboxysomes are primitive bacterial organelles that function as a part of a carbon concentrating mechanism (CCM) under conditions where inorganic carbon is limiting. The carboxysome enhances the efficiency of cellular carbon fixation by encapsulating together carbonic anhydrase and the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The carboxysome has a roughly icosahedral shape with an outer shell between 800 and 1500 Å in diameter, which is constructed from a few thousand small protein subunits. In the cyanobacterium Synechocystis sp. PCC 6803, the previous structure determination of two homologous shell protein subunits, CcmK2 and CcmK4, elucidated how the outer shell is formed by the tight packing of CcmK hexamers into a molecular layer. Here we describe the crystal structure of the hexameric shell protein CcmK1, along with structures of mutants of both CcmK1 and CcmK2 lacking their sometimes flexible C-terminal tails. Variations in the way hexamers pack into layers are noted, while sulfate ions bound in pores through the layer provide further support for the hypothesis that the pores serve for transport of substrates and products into and out of the carboxysome. One of the new structures provides a high-resolution (1.3 Å) framework for subsequent computational studies of molecular transport through the pores. Crystal and solution studies of the C-terminal deletion mutants demonstrate the tendency of the terminal segments to participate in protein—protein interactions, thereby providing a clue as to which side of the molecular layer of hexameric shell proteins is likely to face toward the carboxysome interior.  相似文献   

5.
The availability of the complete genome sequences of Homo sapiens together with those of taxonomically diverse organisms provides an opportunity to carry out cross-species comparison. Comparisons of protein sequences from different organisms are significant source of information as these could help in answering questions regarding the fraction of proteins that are shared by humans and organisms representing the three domains of life, viz., archaea, bacteria, and eukaryota. In the present study, a comparative analysis of the proteins encoded by intronless genes in humans was undertaken. We identified 1125 human intronless proteins that are solely present in eukaryotic lineage. More than two-thirds of these eukaryotic specific proteins appear to be mammalia specific while a small fraction of proteins are conserved in bilateria and coelomata, indicating that diversification of these proteins occurred after the divergence of the major lineages of the eukaryotic crown group. A large fraction of mammalia specific proteins are enriched in proteins responsible for transport and binding, cell envelope, and housekeeping function particularly translation. Another 228 intronless proteins are observed that do not exhibit homology to any of the proteins in the database. The distribution of human intronless proteins suggests that lineage specific expansion is one of the most important sources of organizational diversity in crown-group eukaryotes. The presence of these eukaryotic as well as human specific intronless proteins provides the foundation for rapid analysis of some of the basic processes involved in human genome.  相似文献   

6.
7.
Detailed comparisons of 16 editosome proteins from Trypanosoma brucei, Trypanosoma cruzi and Leishmania major identified protein motifs associated with catalysis and protein or nucleic acid interactions that suggest their functions in RNA editing. Five related proteins with RNase III-like motifs also contain a U1-like zinc finger and either dsRBM or Pumilio motifs. These proteins may provide the endoribonuclease function in editing. Two other related proteins, at least one of which is associated with U-specific 3′ exonuclease activity, contain two putative nuclease motifs. Thus, editosomes contain a plethora of nucleases or proteins presumably derived from nucleases. Five additional related proteins, three of which have zinc fingers, each contain a motif associated with an OB fold; the TUTases have C-terminal folds reminiscent of RNA binding motifs, thus indicating the presence of numerous nucleic acid and/or protein binding domains, as do the two RNA ligases and a RNA helicase, which provide for additional catalytic steps in editing. These data indicate that trypanosomatid RNA editing is orchestrated by a variety of domains for catalysis, molecular interaction and structure. These domains are generally conserved within other protein families, but some are found in novel combinations in the editosome proteins.  相似文献   

8.
Cyanobacteria, including members of the genus Prochlorococcus, contain icosahedral protein microcompartments known as carboxysomes that encapsulate multiple copies of the CO(2)-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) in a thin protein shell that enhances the catalytic performance of the enzyme in part through the action of a shell-associated carbonic anhydrase. However, the exact mechanism by which compartmentation provides a catalytic advantage to the enzyme is not known. Complicating the study of cyanobacterial carboxysomes has been the inability to obtain homogeneous carboxysome preparations. This study describes the first successful purification and characterization of carboxysomes from the marine cyanobacterium Prochlorococcus marinus MED4. Because the isolated P. marinus MED4 carboxysomes were free from contaminating membrane proteins, their protein complement could be assessed. In addition to the expected shell proteins, the CsoS1D protein that is not encoded by the canonical cso gene clusters of α-cyanobacteria was found to be a low-abundance shell component. This finding and supporting comparative genomic evidence have important implications for carboxysome composition, structure, and function. Our study indicates that carboxysome composition is probably more complex than was previously assumed based on the gene complements of the classical cso gene clusters.  相似文献   

9.
A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO(2) fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO(2)-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (epsilon-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO(2) necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.  相似文献   

10.
Acidic macromolecules, as a nucleation factor for mollusc shell formation, are a major focus of research. It remains unclear, however, whether acidic macromolecules are present only in calcified shell organic matrices, and which acidic macromolecules are crucial for the nucleation process by binding to chitin as structural components. To clarify these questions, we applied 2D gel electrophoresis and amino acid analysis to soluble shell organic matrices from nacre shell, non-nacre aragonitic shell and non-calcified squid shells. The 2D gel electrophoresis results showed that the acidity of soluble proteins differs even between nacre shells, and some nacre (Haliotis gigantea) showed a basic protein migration pattern. Non-calcified shells also contained some moderately acidic proteins. The results did not support the correlation between the acidity of soluble shell proteins and shell structure.  相似文献   

11.
Cadmium (Cd) is a major environmental toxicant to plant cells due to its potential inhibitory effects on many physiological processes. To gain a comprehensive understanding of plant response to Cd, wheat seedlings were exposed to a range of Cd concentrations (10, 100 and 200 μM) for 1 week and a combination of physiological and proteomic approaches were used to evidence Cd effects and to access the plant response to Cd toxicity. Root and shoot elongation was decreased, whereas the H2O2 and malondialdehyde content in wheat seedlings was increased significantly at higher Cd concentration. Protein profiles analyzed by two-dimensional electrophoresis revealed that 46 protein spots showed 1.5-fold change in protein abundance following Cd exposure; 31 protein spots were up-regulated and 15 protein spots were down-regulated; 25 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. As expected, most of the up-regulated proteins are involved in heavy metal detoxification and antioxidant processes. Enzyme activity analysis revealed that ascorbate peroxidase and glutathione S-transferase activity was stimulated by Cd treatment. Abundance changes of these proteins, together with their putative functions provide us a new insight that can lead to an integrated understanding of the molecular basis of Cd responses in plants.  相似文献   

12.
The patterns of protein fractions from total salivary glands and from glue plugs were compared in seven members of the Drosophila nasuta subgroup by the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The glue protein patterns are member specific concerning the numbers and the electrophoretic mobilities of major and minor glue protein fractions. However, the major fractions of all subgroup members could be grouped into five SDS-PAGE domains according to the homologies of their electrophoretic mobilities, prominence of Coomassie blue staining, and PAS reaction. In all subgroup members, major fractions are involved in posttranslational modifications into larger protein molecules of the final glue. Quantitative estimations of the glue proteins in D. n. nasuta and D. n. albomicans reveal that they constitute between 55 and 60% of the total salivary gland proteins, whereas in D. melanogaster and in D. hydei the fraction is only 32 and 35%, respectively.  相似文献   

13.
The review considers the original works on the primary structure of biopolymers, which were carried out from 1983 to 2003. Most works were supported by the Russian program Human Genome and earlier similar Russian programs. Little-known publications of 1983-1993 and recent unpublished results are described in detail. In the field of genome comparisons, these concern the OWEN hierarchic algorithm aligning syntenic regions of two genome sequences. The resulting global alignment is obtained as an ordered chain of local similarities. Alignment of sequences sized about 10(6) nucleotides takes several minutes. The concept of local similarity conflicts is generalized to multiple comparisons. New algorithms aligning protein sequences are described and compared with the Smith-Waterman algorithm, which is now most accurate. The ANCHOR hierarchic algorithm generates alignments of much the same accuracy and is twice as rapid as the Smith-Waterman one. The STRSWer algorithm takes an account of the secondary structures of proteins under study. With the secondary structures predicted using the PSI-PRED software for pairs of proteins having 10-30% similarity, the average accuracy of alignments generated by STRSWer is 15% higher than that achieved with the Smith-Waterman algorithm.  相似文献   

14.
The carboxysomal polypeptides of Thiobacillus neapolitanus with apparent molecular masses of 85 and 130 kDa were isolated and subjected to N-terminal sequencing. The first 17 amino acids of the two peptides were identical. The sequence perfectly matched the deduced amino acid sequence of an open reading frame in the carboxysome operon. The gene was subsequently named csoS2. Expression of the gene in Escherichia coli resulted in the production of two peptides with apparent molecular masses of 85 and 130 kDa. Immunospecific antibodies generated against the smaller peptide recognized both peptides; the peptides were named CsoS2A and CsoS2B, respectively. A digoxigenin-hydrazide glycosylation assay revealed that both CsoS2A and CsoS2B are post-translationally modified by glycosylation. CsoS2 was localized to the edges of purified carboxysomes by immunogold electron microscopy using the monospecific CsoS2A antibodies. The molecular mass of CsoS2A calculated from the nucleotide sequence was 92.3 kDa. Received: 1 March 1999 / Accepted: 29 June 1999  相似文献   

15.
The development of the kidney is a complex process that serves as a model organ system for understanding many basic developmental mechanisms, and the pig kidney provides a useful and relevant model of kidney development and function. However, the molecular cascades involved in kidney development during embryonic development in the pig have not been elucidated fully. To better understand the molecular events associated with kidney development, we evaluated changes in gene expression during kidney development (days E40, E70, and E93) and compared these expressions with adults using two-dimensional gel electrophoresis. The functionally regulated proteins were identified by comparing differentially expressed proteins in embryonic kidneys vs. adult kidney. In addition, a representative set of the proteins was subjected to liquid chromatography tandem mass spectrometry analysis. Furthermore, the identified proteins were categorized according to their biological processes and molecular functions. Interestingly, 10 of the 25 proteins identified were apoptosis and actin cytoskeleton-related proteins, such as GRP75, α-fetoprotein, ANXA2, ANXA4, DDAH2, DJ-1, SOD2, cofilin1, vil1, and calbindin1. Based on these results, the proteomic approach was applied to identify specific protein expression changes in kidney tissues during development, and the expressional changes of these embryonic kidney proteins were found to be closely associated with the regulation of kidney development.  相似文献   

16.
17.
18.
Mitochondrial ribosomes contain bacterial-type proteins reflecting their endosymbiotic heritage, and a subset of these genes is retained within the mitochondrion in land plants. Variation in gene location is observed, however, because migration to the nucleus is still an ongoing evolutionary process in plants. To gain insights into adaptation events related to successful gene transfer, we have compiled data for bacterial-origin mitochondrial-type ribosomal protein genes from the completely sequenced Arabidopsis and rice genomes. Approximately 75% of such nuclear-located genes encode amino-terminal extensions relative to their Escherichia coli counterparts, and of that set, only about 30% have introns at (or near) the junction in support of an exon shuffling-type recruitment of upstream expression/targeting signals. We find that genes that were transferred to the nucleus early in eukaryotic evolution have, on average, about twofold higher density of introns within the core ribosomal protein sequences than do those that moved to the nucleus more recently. About 20% of such introns are at positions identical to those in human orthologs, consistent with their ancestral presence. Plant mitochondrial-type ribosomal protein genes have dispersed chromosomal locations in the nucleus, and about 20% of them are present in multiple unlinked copies. This study provides new insights into the evolutionary history of endosymbiotic bacterial-type genes that have been transferred from the mitochondrion to the nucleus.  相似文献   

19.
In the present study, we investigated the differentially expressed proteins associated with ulcerative colitis (UC) using proteomic methods. Two-dimensional electrophoresis (2-DE) technology was performed to separate the total proteins of ulcerative tissues from those of the normal tissues of UC patients. PDQuest software was applied to analyze the obtained 2-DE images. Candidate protein spots between the two groups were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and bioinformatics analysis. The well resolution and reproducible 2-DE patterns of UC and normal tissues were established. Of the 12 differentially expressed proteins, 9 were successfully identified, of which 6 proteins were up-regulated including apolipoprotein C-III, haptoglobin, receptor tyrosine kinase, aldehyde reductase, pericentriolar material 1, and heat shock factor protein 2, and 3 were down-regulated including keratin, filamin A-interacting protein 1, and tropomyosin 3. These identified proteins were related to hormonal modulation, immune response, oxidative stress, and signal conduction. The 2-DE protein expression profile of the UC tissues displays an obvious difference from that of the normal controls. Various proteins may be involved in the occurrence of UC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号