首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism.  相似文献   

2.
In order to provide additional information on the biochemical events that interact to cause Schwann cells to proliferate, we have monitored the intracellular pH of Schwann cells that have been stimulated to divide with myelin-enriched fractions (MEF) or axolemma-enriched fractions (AEF). The intracellular pH of Schwann cells was monitored using 2',7'-bis(carboxymethyl)-5(6)-carboxyfluorescein (BCECF), which displays an increase in fluorescence upon alkalinization. Both AEF and MEF caused dose-dependent increases in the intracellular fluorescence of the Schwann cell cultures. At their maximum doses, AEF and MEF stimulation resulted in a 260 and 300% increase in intracellular fluorescence, respectively. The increase in intracellular fluorescence was abolished when cells were stimulated in Na+-free media, suggesting a role for the Na+/H+ exchanger. Mitotic stimulation required integrity of the Na+/H+ exchanger, as inhibition of the Na+/H+ exchanger for periods up to 1 h after addition of mitogen caused a significant inhibition of subsequent mitosis. Phorbol esters, which can potentiate AEF- and MEF-induced Schwann cell proliferation, increased intracellular fluorescence fivefold, an effect which was also dependent upon the presence of Na+ in the culture media. The specificity of the increase in intracellular pH for AEF and MEF was tested by incubating Schwann cells with liver microsomes and a biologically inactive phorbol alcohol, neither of which is significantly mitogenic for Schwann cells. Neither liver microsomes nor phorbol alcohol had a significant effect on intracellular pH. The implications of the increase in intracellular pH in Schwann cells with respect to inositol phospholipid metabolism, protein kinase C activation, and cellular proliferation are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
It has recently been demonstrated that the chemotactic peptide N-formyl-Met-Leu-Phe activates phospholipase D (PLD) in dimethyl sulfoxide-differentiated HL-60 granulocytes to produce phosphatidic acid (PA) and, in the presence of ethanol, phosphatidylethanol (PEt) (Pai, J.-K., Siegel, M. I., Egan, R. W., and Billah, M. M. (1988) J. Biol. Chem. 263, 12472-12477). We now report that biologically active phorbol esters, a cell-permeable diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), and calcium ionophore A23187 are also potent inducers of PLD in these HL-60 granulocytes. HL-60 granulocytes have been selectively labeled in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P by incubating the cells with alkyl-[32P]lyso-phosphatidylcholine (PC). When these labeled cells are treated with phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-dibutyrate, OAG, or A23187, alkyl-[32P]PA is formed. Because cellular ATP has not been labeled with 32P, the formation of alkyl-[32P]PA conclusively demonstrates PLD activation by these agents. In the presence of 0.5% ethanol, phorbol esters, OAG, and A23187 also induce formation of alkyl-[32P]PEt, demonstrating that the activated PLD catalyzes transphosphatidylation between the phosphatidyl moiety of the alkyl-[32P]PC and ethanol. Formation of alkyl-[32P]PA and alkyl-[32P]PEt in response to these various agents occurs in a time- and dose-dependent manner and exhibits differential Ca2+ requirements. Based on experiments with both [3H]alkyl-PC and alkyl-[32P]PC, it is concluded that alkyl-PA and alkyl-PEt formed in response to PMA, OAG, or A23187 are derived exclusively from PLD action on alkyl-PC. Furthermore, subthreshold concentrations of PMA (0.5-2.0 nM) or OAG (1.0-25 microM) combined with subthreshold levels of A23187 (15-60 nM) induce the formation of alkyl-[32P]PA and alkyl-[32P]PEt, suggesting that receptor-mediated activation of PLD might involve cooperative interactions between Ca2+ and diglyceride. Although PLD is activated by agents that also activate protein kinase C, the protein kinase C inhibitor, K252a, inhibits PMA-induced protein phosphorylation but causes only partial inhibition of PLD activation. We conclude that phorbol esters, OAG, and A23187 activate PLD in HL-60 granulocytes via protein kinase-independent as well as protein kinase-dependent mechanisms.  相似文献   

4.
When guinea pig lymphocytes were cultured with 1-oleoyl-2-acetylglycerol (OAG) and the ionophore A23187 for 8 h, [3H]-thymidine incorporation into the acid-insoluble fraction of the cells was stimulated synergistically. Further addition of dibutyryl cAMP caused a biphasic effect on the synergistic stimulation. Dibutyryl cAMP augmented the synergistic stimulation when A23187 was at the concentration of 0.075 micrograms/ml, but inhibited it when the ionophore was at 0.25 micrograms/ml. At the higher concentration of A23187, dibutyryl cAMP stimulated the [3H]thymidine incorporation when culture was for 4 h, but inhibited it when culture was for 8 h. The results were the same when 12-0-tetradecanoylphorbol-13-acetate (TPA) was used instead of OAG. Butyrate could replace dibutyryl cAMP for stimulation of [3H]thymidine incorporation in combination with TPA and A23187, but not with OAG and A23187 at the lower ionophore concentration. Dibutyryl cAMP but not butyrate stimulated ornithine decarboxylase induction caused by TPA and A23187. These results suggest that the effect of dibutyryl cAMP on DNA synthesis induced by OAG and A23187 was biphasic and depended on the concentration of A23187 and on the time of culture, and that the stimulation mechanism of butyrate is different from that of dibutyryl cAMP.  相似文献   

5.
Cultured Schwann cells stimulated with an axolemma- or myelin-enriched fraction incorporated 2.5 to three times as much [3H]thymidine when 10 mM lithium was added to the extracellular medium. The ability of lithium to enhance the mitogenic activity of either fraction was dose dependent. This result was not due to an increase in osmolarity, because addition of 10 mM NaCl had no effect on the amount of labeled thymidine accumulated by Schwann cells treated with either membrane fraction. In an earlier study, the effect of either membrane fraction could be potentiated with active phorbol esters. Lithium significantly enhanced the incorporation of [3H]thymidine into Schwann cells treated with a myelin-enriched fraction and phorbol esters. In contrast, lithium slightly increased the amount of labeled thymidine incorporated into Schwann cells stimulated with an axolemma-enriched fraction and phorbol esters. The mitogenic activity of either membrane fraction was impaired when the calcium channel blockers Mn2+ and nifedipine were added. Addition of lithium stimulated an increase in the amount of [3H]thymidine accumulated by Schwann cells treated with either the axolemma- or myelin-enriched fraction in the presence of either Mn2+ or nifedipine.  相似文献   

6.
The biosynthesis of myelin-associated glycolipids was studied in quiescent secondary cultures of Schwann cells and in a rapidly proliferating population of transfected Schwann cells (TSC) by in vitro incorporation of [3H]galactose. The TSC demonstrated a marked increase (>10-fold) in [3H]galactose incorporation when compared to quiescent Schwann cells. The level (or amount) of [3H]galactose incorporation into lipids is dependent upon the number of TSC in culture. The majority of3H-labeled lipids were oligohexosylceramides (GL-2, GL-3, and GL-4). Substrates that inhibit TSC proliferation, collagen type I and Matrigel, an artificial basement membrane, decrease the [3H]galactose incorporation by 25% and 80%, respectively. Our results indicate that the synthesis of glucocerebroside and its homologs is associated with Schwann cell proliferation.Abbreviations HPTLC high-performance thin-layer chromatography - TL total lipids - NL non-polar lipids - GL glycolipids - PL phospholipids - MGDG monogalactosyl diacylglycerol - GalCe galactocerebroside - GalCe-OH galacto hydroxycerebroside - GlcCe glucocerebroside - Su sulfatide - Su-OH hydroxysulfatide - GL-2 lactosylceramide - GL-3 trihexosylceramide - GL-4 tetrahexosylceramide - PE phosphatidylethanolamine - PC phosphatidylcholine - PS phosphatidylserine - PI phosphatidylinositol - TSC transfected Schwann cells A preliminary report of this work was presented at the 22nd Annual Meeting of the American Society for Neurochemistry, Charleston, South Carolina, March 13, 1991.  相似文献   

7.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

8.
Schwann cell proliferation induced by a myelin-enriched fraction was examined in vitro. Although nearly all the Schwann cells contained material that was recognized by antisera to myelin basic protein after 24 h, only 1% of the cells were synthesizing DNA. 72 h after the addition of the mitogen a maximum of 10% of the cells incorporated [3H]thymidine. If the cultures were treated with the myelin-enriched fraction for 24 h and then washed, the number of proliferating Schwann cells decreased by 75% when compared with those cells that were incubated with the mitogen continuously. When Schwann cells were labeled with [14C]thymidine followed by a pulse of [3H]thymidine 24 h later, every Schwann cell labeled with [3H]thymidine was also labeled with [14C]thymidine. Although almost every Schwann cell can metabolize the myelin membranes within 24 h of exposure, a small population of cell initially utilizes the myelin as a mitogen, and this population continues to divide only if myelin is present in the extracellular media. The percentage of the Schwann cells that initially recognize the myelin-enriched fraction as a mitogen is dependent upon the age of the animal from which the cells were prepared.  相似文献   

9.
A series of studies was conducted to evaluate the effects of phorbol esters and a diacylglycerol analog on basal and hormone-stimulated steroidogenesis in granulosa cells from the largest preovulatory follicle of the domestic hen. Agents that previously have been shown to activate protein kinase C, such as the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), and the synthetic diacylglycerol analog, 1-oleoyl-2-acetylglycerol (OAG), suppressed luteinizing hormone (LH)-induced progesterone (PMA at levels of 10 and 100 ng/tube; OAG at levels of 10 and 25 micrograms/tube), and androgen (10 and 100 ng PMA; 25 micrograms OAG) production, but had no effect on basal levels of either steroid. Furthermore, PMA decreased the ability of vasoactive intestinal peptide to induce steroidogenesis, suggesting that protein kinase C activation may generally modulate the activity of hormones that act via the adenylyl cyclase/cyclic 3',5'-adenosine monophosphate (cAMP) second messenger system. In further support of this proposal was the finding that PMA and OAG decreased the production of cAMP in response to LH, and attenuated the steroidogenic response in granulosa cells exposed to 10 mM 8-bromo-cAMP. By contrast, the induction of calcium mobilization using a calcium ionophore (A23187; 0.5-2.0 microM) stimulated progesterone and androgen production without increasing intracellular levels of cAMP, and this stimulatory effect on steroidogenesis was not inhibited by the presence of 100 ng PMA/tube. From these data, we suggest that the activation of protein kinase C in granulosa cells of the hen may provide a physiological mechanism by which receptor-mediated steroidogenesis, involving the adenylyl cyclase second messenger system, is modulated.  相似文献   

10.
When cultured pituitary cells were stimulated with synthetic diacylglycerol such as 1-oleoyl-2-acetylglycerol (OAG), or with a potent tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA), which are known stimulators of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), enhanced release of luteinizing hormone (LH) was observed. Similarly, LH release was also stimulated by the Ca2+-ionophore, A23187. Simultaneous presence of A23187 and OAG or TPA resulted in a synergistic response that mimicked the full physiological response to gonadotropin releasing hormone (GnRH). Removal of extracellular Ca2+ only slightly affected the stimulatory action of TPA and OAG on LH release, but completely blocked the effect of GnRH. The results suggest that the stimulatory effect of GnRH on LH release may be mediated by two intracellular pathways involving Ca2+ and diacylglycerol as second messengers.  相似文献   

11.
Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.  相似文献   

12.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

13.
Aristolochic acid and PGBx, two structurally unrelated, protein-targeted inhibitors of isolated phospholipases A2, are effective antagonists of calcium ionophore A23187-stimulated mobilization of [3H]arachidonate from human neutrophils. We now report that preincubation of neutrophils with oleoylacetylglycerol (OAG, 15 microM) substantially reverses the inhibitory effect of 200 microM aristolochic acid (from 70 to 24% inhibition). Similarly, OAG increases the IC50 for PGBx from 2.5 to greater than 20 microM. The effects of OAG on inhibition by either aristolochic acid or PGBx are dose-dependent, with an ED50 of 2.5 microM. Protection against inhibition by either aristolochic acid or PGBx is also observed with phorbol myristate acetate (PMA, ED50 3 nM), but not 4-alpha-phorbol didecanoate. Aristolochic acid and PGBx do not inhibit PMA-stimulated superoxide generation, and are thus not protein kinase C inhibitors. Furthermore, neither aristolochic acid nor PGBx inhibit diglyceride generation through the phospholipase D/phosphatidate phosphohydrolase pathway. A23187-stimulated [3H]arachidonate mobilization is increased by 20-50% when neutrophils are preincubated with OAG or PMA. The present results indicate that OAG and PMA also modulate the A23187-stimulated [3H]arachidonate mobilization so as to render it less sensitive to inhibitors of phospholipase A2.  相似文献   

14.
Treatment of human promyelocytic leukemia cells (HL-60 cells) with 12-O-tetradecanoylphorbol 13-acetate (TPA) results in terminal differentiation of the cells to macrophage-like cells. Treatment of the cells with TPA induced marked enhancement of the phosphorylation of 28- and 67-kDa proteins and a decrease in that of a 75-kDa protein. When the cells were treated with diacylglycerol, i.e. 50 micrograms/ml 1-oleoyl-2-acetylglycerol (OAG), similar changes in the phosphorylation of 28-, 67-, and 75-kDa proteins were likewise observed, indicating that OAG actually stimulates protein kinase C in intact HL-60 cells. OAG (1-100 micrograms/ml), which we used, activated partially purified mouse brain protein kinase C in a concentration-dependent manner. Treatment of HL-60 cells with 10 nM TPA for 48 h caused an increase by about 8-fold in cellular acid phosphatase activity. Although a significant increase in acid phosphatase activity was induced by OAG, the effect was scant compared to that of TPA (less than 7% that of TPA). After 48-h exposure to 10 nM TPA, about 95% of the HL-60 cells adhered to culture dishes. On the contrary, treatment of the cells either with OAG (2-100 micrograms/ml) or phospholipase C failed to induce HL-60 cell adhesion. Ca2+ ionophore A23187 failed to act synergistically with OAG. In addition, hourly or bi-hourly cumulative addition of OAG for 24 h also proved ineffective to induce HL-60 cell adhesion. Our present results do not imply that protein kinase C activation is nonessential for TPA-induced HL-60 cell differentiation, but do demonstrate that protein kinase C activation is not the sole event sufficient to induce HL-60 cell differentiation by means of this agent.  相似文献   

15.
The feasibility of using saponin as a permeabilization agent to study the effect of free Ca2+ concentration ([Ca2+]f) on prostaglandin I2 (PGI2) synthesis and mobilization of arachidonic acid from membrane phospholipids was investigated in cultured bovine pulmonary artery endothelial cells (BPAEC). Treatment of BPAEC with 20 micrograms/ml saponin caused selective permeabilization of the plasma membrane as determined by measurements of the release of lactate dehydrogenase and beta-hexosaminidase. In cells prelabeled with [3H]arachidonic acid for 22 h, permeabilization with 20 micrograms/ml saponin induced PGI2 synthesis and release of [3H]arachidonic acid from membrane phospholipids. These effects were dependent upon [Ca2+]f in the range 72 nM to 5 microM. Release of [3H]arachidonic acid from phospholipid classes was determined in suspensions of BPAEC prelabeled with [3H]arachidonic acid and permeabilized with 20 micrograms/ml saponin. At [Ca2+]f optimal for PGI2 synthesis, 16.2% of the total incorporated [3H]arachidonic acid was released from phosphatidylinositol (3.4%), phosphatidylethanolamine (3.5%) and phosphatidylcholine (9.3%). The time course and dependence upon [Ca2+]f of [3H]arachidonic acid release from phospholipids correlated with PGI2 synthesis. The amount of PGI2 synthesized in permeabilized BPAEC was similar to that in cell cultures treated with the calcium ionophore A23187. In comparison, however, PGI2 synthesis induced by A23187 was associated with less release of [3H]arachidonic acid from membrane phospholipids, e.g., 2.3% versus 16.2%. The greater loss of [3H]arachidonic acid from phospholipids in saponin-permeabilized BPAEC was most likely due to the loss of cell integrity and/or nonspecific effects of the detergent on phospholipases. Despite these limitations, the Ca2+ dependence observed for PGI2 synthesis and [3H]arachidonic acid mobilization suggest that saponin-permeabilization may provide a useful system for studies of the intracellular events triggered by the rise in intracellular Ca2+ which culminate in PGI2 synthesis.  相似文献   

16.
In hepatocytes pre-labelled with [3H]glycerol, vasopressin increased by 20% the amount of radioactivity present in diacylglycerols. The effect of vasopressin was partially dependent on Ca2+. The magnitude of the increase in [3H]diacylglycerol was 5-times the sum of the radioactivity present in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. No stimulation by vasopressin of the initial rate of incorporation of radioactivity into diacylglycerols was observed in cells incubated in the presence of 10 mM [3H]glycerol. Treatment of hepatocytes labelled with either [3H]ethanolamine or [3H]choline with vasopressin, ionophore A23187 or phospholipase C increased the amount of radioactivity present in trichloroacetic acid extracts of the cells. The effect of vasopressin was dependent on extracellular Ca2+. It is concluded that in hepatocytes vasopressin increases diacylglycerols by a process which does not principally involve the conversion of phosphoinositides to diacylglycerol or the de novo synthesis of diacylglycerol from glycerol 3-phosphate, but does involve the Ca2+-dependent conversion of phosphatidylethanolamine and phosphatidylcholine to diacylglycerol.  相似文献   

17.
1. The effects of phytohaemagglutinin and of a Ca2+ ionophore (A23187) on glycerolipid metabolism in lymphocytes from pig lymph nodes were compared (a) by studying the incorporation of [32P]Pi and [3H]glycerol, and (b) by following the redistribution of [3H]glycerol among the lipids caused by these agents in pulse-chase experiments. 2. Phytohaemagglutinin only stimulated 32P incorporation into phosphatidylinositol and, to a slight extent, phosphatidate. Removal of most of the extracellular Ca2+ somewhat decreased this response. 3. Ionophore A23187 stimulated the labelling of phosphatidate and phosphatidylinositol with 32P to a much greater extent than did phytohaemagglutinin: the increase in phosphatidate labelling, but not that of phosphatidylinositol, was almost abolished by the removal of extracellular Ca2+. 4. The combined effects of phytohaemagglutinin and ionophore appeared to be additive, rather than synergistic. 5. Treatment with ionophore A23187 somewhat decreased the total incorporation of [3H]glycerol into glycerolipids, possibly because it lowered cell ATP content. In these experiments di- and tri-acylglycerol behaved anomalously, triacylglycerol labelling being suppressed completely, whereas that of diacylglycerol was enhanced. The pulse-chase results revealed that triacylglycerol was converted into diacylglycerol in the ionophore-treated cells, and the availability of this diacylglycerol probably led to the enhanced labelling of phosphatidate and phosphatidylinositol in the these cells. 6. Thus an increase in intracellular Ca2+ concentration appeared to have three effects on glycerolipid metabolism: (a) slight inhibition of some metabolic step preceding phosphatidate synthesis, (b) inhibition of diacylglycerol acyltransferase and (c) activation of a triacylglycerol lipase. 7. In contrast, it seems likely that the only effect of phytohaemagglutinin is to stimulate phosphatidylinositol breakdown. 8. Pig polymorphonuclear leucocytes treated with ionophore A23187 showed metabolic changes that were similar to those demonstrated with lymphocytes. 9. A possible similarity is suggested between Ca2+-stimulated triacylglycerol lipase in lymphocytes and polymorphonuclear leucocytes and previous observations of enhanced triacylglycerol metabolism in stimulated cells whose metabolic functions involve membrane fusion.  相似文献   

18.
The early actions of thyrotropin-releasing hormone (TRH) have been studied in hormone-responsive clonal GH3 rat pituitary cells. Previous studies had demonstrated that TRH promotes a "phosphatidylinositol response" in which increased incorporation of [32P]orthophosphate into phosphatidylinositol and phosphatidic acid was observed within minutes of hormone addition. The studies described here were designed to establish whether increased labeling of phosphatidylinositol and phosphatidic acid resulted from prior hormone-induced breakdown of an inositol phosphatide. GH3 cells were prelabeled with [32P]orthophosphate or myo-[3H]inositol. Addition of TRH resulted in the rapid disappearance of labeled polyphosphoinositides, whereas levels of phosphatidylinositol and other phospholipids remained unchanged. TRH-promoted polyphosphoinositide breakdown was evident by 5 S and maximal by 15 s of hormone treatment. Concomitant appearance of inositol polyphosphates in [3H]inositol-labeled cells was observed. In addition, TRH rapidly stimulated diacylglycerol accumulation in either [3H]arachidonic- or [3H]oleic acid-labeled cultures. These results indicate that TRH rapidly causes activation of a polyphosphoinositide-hydrolyzing phospholipase C-type enzyme. The short latency of this hormone effect suggests a proximal role for polyphosphoinositide breakdown in the sequence of events by which TRH alters pituitary cell function.  相似文献   

19.
We compared the action of K+ on aldosterone secretion from isolated bovine adrenal glomerulosa cells with that of ionophore A23187. Addition of either 50 nM-A23187 or 8 mM-K+ to perifused cells induces a similar initial aldosterone-secretory responses, and a similar sustained increases in Ca2+ entry. However, K+-induced secretion is more sustained than is A23187-induced secretion, even though each agonist appears to act by increasing Ca2+ entry into the cells. When [3H]inositol-labelled cells are stimulated by 8 mM-K+, a small decrease in phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is observed. This decrease is not accompanied by an increase in inositol trisphosphate (InsP3) concentration. Also, if [3H]arachidonic acid-labelled cells are exposed to 8 mM-K+, there is no increase in [3H]diacylglycerol production. When [3H]inositol-labelled cells are stimulated by 50 nM-A23187, a small decrease in PtdIns(4,5)P2 is observed. This decrease is not accompanied by an increase in InsP3. The cyclic AMP content of K+-treated cells was approximately twice that in A23187-treated cells. If cells are perifused simultaneously with 50 nM-forskolin and 50 nM-A23187, the initial aldosterone-secretory response is similar to that induced by A23187 alone, and the response is sustained rather than transient, and is similar to that seen during perifusion of cells with 8 mM-K+. This dose of forskolin (50 nM) causes an elevation of cyclic AMP concentration in A23187-treated cells, to a value similar to that in K+-treated cells. These results indicate that, in K+-treated cells, a rise in cyclic AMP content serves as a positive sensitivity modulator of the Ca2+ message, and plays a key role in mediating the sustained aldosterone-secretory response.  相似文献   

20.
In cultured dorsal root ganglion (DRG) neurons prelabeled with [3H]arachidonic acid [( 3H]AA), bradykinin (BK) stimulation resulted in increased levels of radioactive diacylglycerol, monoacylglycerol, and free AA. The transient increases in content of radioactive diacylglycerol and monoacylglycerol preceded the increase in level of free AA, suggesting the contribution of a diacylglycerol lipase pathway to AA release. An analysis of the molecular species of diacylglycerols in unstimulated cultures revealed the presence of two primary [3H]AA-containing species, 1-palmitoyl-2-arachidonoyl and 1-stearoyl-2-arachidonoyl diacylglycerol. BK stimulation resulted in a preferential increase in content of 1-stearoyl-2-arachidonoyl diacylglycerol. When DRG cultures were labeled with [3H]stearic acid, treatment with BK increased the amount of label in diacylglycerol and free stearic acid, but not in monoacylglycerol. This result suggested that AA release occurred through the successive actions of an sn-1 diacylglycerol lipase and monoacylglycerol lipase. Other data supporting a diacylglycerol lipase pathway was the significant inhibition of [3H]AA release and consequent accumulation of diacylglycerol by RG 80267, which preferentially inhibits diacylglycerol lipase. Analysis of the molecular species profiles of individual phospholipids in DRG neurons indicated that phosphoinositide hydrolysis may account for a significant portion of the rapid increase in content of 1-stearoyl-2-arachidonoyl diacylglycerol. We were unable to obtain evidence that the phospholipase A2 pathway makes a significant contribution to BK-stimulated AA release in DRG cultures. Under our assay conditions there were no BK-stimulated increases in levels of radioactive lysophosphatidylinositol, lysophosphatidylcholine, or lysophosphatidylethanolamine in cultures prelabeled with [3H]inositol, [3H]choline, or [3H]-ethanolamine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号