首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shrews (genus Sorex, small insectivorous mammals) are well known for their extremely high basal metabolic rates (BMRs) even when corrected for their small body size. We measured energy expenditure of the common shrew (Sorex araneus) under natural conditions (field metabolic rate [FMR]) by doubly labeled water method to test whether FMR is proportional to high BMR in this species. The study was performed in summer in northeastern Poland. In addition to the FMR, we also measured maximum metabolic rates induced by cold exposure and by intense activity (MMRCOLD and MMRRUN, respectively) to evaluate the aerobic reserve (MMR-FMR) in S. araneus. This aerobic reserve was used as an indicator of the potential for metabolic constraints. The FMR averaged 2.31+/-0.32 L CO2 d(-1) (+/-SD) or 58.1+/-8.0 kJ d(-1) in 8.2-g animals. This figure constituted 216%-258% of a value predicted for a "standard" mammal of the same body mass and was the highest mass-specific field metabolic rate in mammals. Because of the high BMR level in S. araneus, the FMR to BMR ratio (2.4) was not far off mammalian standards (median value of 3.1). The rate of water efflux determined in S. araneus (20.2 mL H2O d(-1) or 2.46 mL H2O g(-1) d(-1)) exceeded all figures reported to date in other mammals and was apparently linked to the high FMR level and relatively high water content of shrews' food. Maximal metabolic rates (MMRRUN of 18.1+/-1.6 mL O2 g(-1) h(-1) and MMRCOLD of 23.5+/-1.9 mL O2 g(-1) h(-1)) were not high in proportion to BMR or FMR that resulted in relatively narrow aerobic reserve in S. araneus: 20% when calculated against the MMRRUN and 39% when compared with the MMRCOLD. Our study reveals that S. araneus has high energy costs of living and operates close to its physiological limits.  相似文献   

2.
The fasting metabolism of 71- to 235-d-old subantarctic fur seal (Arctocephalus tropicalis) pups from Amsterdam Island, southern Indian Ocean, was investigated during the long foraging trips of their mothers. Body lipid reserves were proportionally greater in female than male pups and higher in postmoult (37%) than premoult (10%) animals. The mass-specific rate of mass loss did not differ between the sexes but was lower than observed in other species. Daily mass loss was estimated to 56% fat, 10% protein, and 34% water. The rate of protein catabolism (15 g d(-1)) was negatively related to the size of initial lipid stores and accounted for 9% (+/-1%) of total energy expenditure. However, body composition changes during the fast were not equal between the sexes, with females relying more on protein catabolism than males (11% and 5% of total energy expenditure, respectively). Energy expenditure (270 kJ kg(-1) d(-1)) and metabolic water production (11.5 mL kg(-1) d(-1)) rates are the lowest reported for an otariid species. These results suggest that subantarctic fur seal pups greatly reduce activity levels to lower energy expenditure in addition to adopting protein-sparing metabolic pathways in order to survive the extreme fasts they must endure on Amsterdam Island.  相似文献   

3.
We measured oxygen consumption (V(O(2))) and carbon dioxide emission (V(CO(2))) rates, air-cell gas partial pressures of oxygen (P(A)O(2)) and CO(2) (P(A)CO(2)), eggshell water vapour conductance and energy content of the ostrich (Struthio camelus) egg, 'true hatchling' and residual yolk, and calculated RQ and total oxygen consumption (V(O(2)tot)) for ostrich eggs incubated at 36.5 degrees C and 25% relative humidity. The V(O(2)) pattern showed a drop of approximately 5% before internal pipping. V(O(2)) just prior to internal pipping agrees with allometric calculations. Despite the higher incubation temperature compared to other studies, and the resultant shorter incubation duration (42 days), V(O(2)tot) (91.7 l kg(-1)) was similar to a previously reported value. RQ values during the second half of incubation (approx. 0.68) were lower than expected for lipid catabolism. Prior to internal pipping, P(A)O(2) and P(A)CO(2) were 98 and 48.3 torr (13.1 and 6.4 kPa), respectively. The growth pattern of the ostrich embryo is different from the typical precocial pattern, showing a time delay in the rapid growth phase. As a result, the lowered overall energy expenditure for tissue maintenance, as compared to other species, is reflected in the low yolk utilization and high residual yolk fraction of the whole hatchling dry mass. These could also result from the relatively short incubation period of the ostrich egg, thereby evading desiccation by excess water loss.  相似文献   

4.
Scattered populations of Rüppell's foxes (Vulpes rueppelli) occur across the deserts of northern Africa and Arabia. Little is known about the biology of these canids, especially the physiological mechanisms that contribute to their ability to live in such harsh environments. For individuals from Saudi Arabia, we tested the hypotheses that Rüppell's foxes have a reduced basal metabolic rate and total evaporative water loss (TEWL), parameters measured in the laboratory, and a reduced field metabolic rate (FMR) and water flux when free-living. Under basal conditions in the laboratory, males, which averaged 1,858 g in body mass, had an oxygen consumption of 914.9 mL O(2)/h, whereas females, which weighed on average 1,233 g, consumed 682.9 mL O(2)/h; rates of oxygen consumption translated to 441.4 kJ/d and 329.4 kJ/d, respectively. TEWL averaged 52.6 g H(2)O/d for males and 47.5 g H(2)O/d for females. We found no evidence that basal metabolism is reduced in Rüppell's foxes, but their TEWL was remarkably low: 50.9% of allometric prediction for males and 64.5% for females. In the wild during winter, males expended energy at a rate of 1,306.5 kJ/d, whereas females had an expenditure of 722.8 kJ/d. Analysis of covariance with FMR as the dependent variable, sex as a fixed factor, and body mass as a covariate showed no statistical difference in FMR between sexes. Water flux did not differ significantly between sexes and averaged 123 mL H(2)O/d, a value 30% lower than the kit fox from the deserts of southwestern North America. FMR was positively related to nocturnal activity levels as FMR (kJ/d) = -2,900.1+55.5 (% of time moving). The water content of prey items varied between 1.9 and 4.1 g H(2)O/g dry matter consumed. Based on these values and knowledge of their diet, we calculated that foxes captured about one rodent and a variety of anthropods per night of foraging.  相似文献   

5.
Physiological, anatomical and behavioural adaptations enable the Australian desert goby, Chlamydogobius eremius, to live in mound springs and temporary aquatic habitats surrounding the south-eastern rim of the Lake Eyre drainage basin in the harsh inland of Australia. This study describes the desert goby's respiratory and metabolic responses to hypoxic conditions and its use of buccal air bubbles for gas exchange at the water surface. Oxygen consumption for C. eremius is significantly higher in water than in air under normoxic and hypoxic conditions. In water, total oxygen consumption (V(O(2))) increases from normoxic conditions (253 microl g(-1) h(-1)) to 8% ambient O(2) concentration (377 microl g(-1) h(-1)), then decreases with increasing hypoxia of 4% O(2) (226 microl g(-1) h(-1)) and at 2% O(2) (123 microl g(-1) h(-1)). In air (fish were moist but out of water), V(O(2)) progressively decreases from normoxic conditions to hypoxic conditions (21% O(2), V(O(2)) is 169 microl g(-1) h(-1) to 39 microl g(-1) h(-1) at 2% O(2)). These data indicate oxygen-conforming patterns with increasing hypoxia both in air and in water below 8% O(2). In water, opercular movement rates remain unchanged with increasing hypoxia (139 min(-1) at 21% O(2), 154 min(-1) at 8%, 156 min(-1) at 4% and 167 min(-1) at 2%) but in air, opercular movement rates are significantly lower than in water, corresponding with the lower metabolic rate (71 min(-1) at 21% O(2), 53 min(-1) at 8%, 96 min(-1) at 4% and 64 min(-1) at 2%). Chlamydogobius eremius can use a buccal air bubble for aerial O(2) uptake, most probably in response to increased aquatic hypoxia. In air, C. eremius relies more on the buccal bubble as an oxygen source with increasing hypoxia up to an ambient O(2) of 4% (7.1% of V(O(2)) at 21% O(2); 14.5% at 8% O(2); and 27.1% at 4% O(2)), then when the available supply of O(2) is further reduced, it decreases (15% of V(O(2)) at 2% O(2)) and respiration across the skin again makes a higher relative contribution. The Australian desert goby has a higher metabolic rate in higher salinities (336 microl g(-1) h(-1) in 35 ppt, 426 microl g(-1) h(-1) in 70 ppt) than in freshwater (235 microl O(2) g(-1) h(-1)), presumably because of the increased metabolic cost of osmoregulation. There was no significant difference in V(O(2)) for fish in air that had come from varying salinities.  相似文献   

6.
Accurate estimations of energy requirements at the population level are crucial because of disease processes associated with energy imbalance. The present objective was to compare energy expenditure with existing Recommended Nutrient Intakes for Canadians (RNIC) and determine whether the RNIC provides a true index of energy requirement in middle-aged and elderly Canadian women. A second objective was to compare energy expenditure and the RNIC to Food and Agriculture Organization, World Health Organization, United Nations University (FAO/WHO/UNU) predictions. Seventy-six women were recruited for the study (67.3 +/- 11.5 y, 63 +/- 11.7 kg, BMI 24.8 +/- 4.4 kg x m(-2)). The two-point doubly-labelled water (DLW) method was used over 13 days to assess energy expenditure while subjects carried out their routine activities. Subjects were stratified to enable age specific requirements for middle-aged and elderly women. At weight maintenance, energy needs were underestimated using the RNIC (7.1 +/- 1.6 MJ x d(-1), 1698 +/- 391 kcal x d(-1)) compared to total energy expenditure (10.0 +/- 3.2 MJ x d(-1), 2395 +/- 746 kcal x d(-1)) as determined by DLW as a whole and for each age group. The RNIC recommendations were lower than the FAO/WHO/UNU estimations even for light activity. Results indicate that mean energy expenditure was 29% greater than the RNIC recommendations created using formulas based on age and weight, whereas the FAO/WHO/ UNU estimations closely approximated energy expenditure based on heavy activity in women 49-79 y and light activity in women over 80 y old. These data suggest a systematic underestimation of Canadian energy recommendations for women.  相似文献   

7.
Gillon JS  Yakir D 《Plant physiology》2000,123(1):201-214
(18)O discrimination in CO(2) stems from the oxygen exchange between (18)O-enriched water and CO(2) in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this (18)O-labeled CO(2) escapes back to the atmosphere, resulting in an effective discrimination against C(18)OO during photosynthesis (Delta(18)O). By constraining the delta(18)O of chloroplast water (delta(e)) by analysis of transpired water and the extent of CO(2)-H(2)O isotopic equilibrium (theta(eq)) by measurements of CA activity (theta(eq) = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured Delta(18)O in a leaf cuvette attached to a mass spectrometer to derive the CO(2) concentration at the physical limit of CA activity, i.e. the chloroplast surface (c(cs)). From the CO(2) drawdown sequence between stomatal cavities from gas exchange (c(i)), from Delta(18)O (c(cs)), and at Rubisco sites from Delta(13)C (c(c)), the internal CO(2) conductance (g(i)) was partitioned into cell wall (g(w)) and chloroplast (g(ch)) components. The results indicated that g(ch) is variable (0.42-1.13 mol m(-2) s(-1)) and proportional to CA activity. We suggest that the influence of CA activity on the CO(2) assimilation rate should be important mainly in plants with low internal conductances.  相似文献   

8.
Leaf-level CO2 assimilation (A(area)) can largely be predicted from stomatal conductance (g(s)), leaf morphology (SLA) and nitrogen (N) content (N(area)) in species across biomes and functional groups. The effects of simulated global change scenarios, increased summer monsoon rain (+H2O), N deposition (+N) and the combination (+H2O +N), were hypothesized to affect leaf trait-photosynthesis relationships differently in the short- and long-term for the desert shrub Larrea tridentata. During the spring, +H2O and +H2O +N plants had lower A(area) and g(s), but similar shoot water potential (Psi(shoot)) compared with control and +N plants; differences in A(area) were attributed to lower leaf N(area) and g(s). During the summer, +H2O and +H2O +N plants displayed higher A(area) than control and +N plants, which was attributed to higher Psi(shoot), g(s) and SLA. Throughout the year, A(area) was strongly correlated with g(s) but weakly correlated with leaf N(area) and SLA. We concluded that increased summer monsoon had a stronger effect on the performance of Larrea than increased N deposition. In the short term, the +H2O and +H2O +N treatments were associated with increasing A(area) in summer, but also with low leaf N(area) and lower A(area) in the long term the following spring.  相似文献   

9.
Cell free sodium lactate solutions were subjected to purification based on mono- and bi-polar electrodialysis. Lactate concentration in the product stream increased to a maximum of 15% during mono-polar electrodialysis. Stack energy consumption averaged 0.6 kW h kg(-1) lactate transported at current efficiencies in the 90% range. Under optimum feed concentration (125 g l(-1)) and process conditions (auto-current mode with conductivity setpoints of minimum 5 and maximum 40 mS cm(-1)), lactate flux reached 300 g m(-2) h(-1) and water flux were low for mono-polar electrodialysis averaging 0.3 kg H(2)O per M lactate transported. Glucose in the concentrate stream solutions was reduced to < 2 g l(-1). Acetate impurities enriched from about 0.5 g l(-1) in the feed stream to 1.5 g l(-1) in the concentrate stream solutions. After mono-polar electrodialysis, the concentrated sodium lactate solutions were further purified using bi-polar electrodialysis. Water transport during bi-polar electrodialysis reached figures of 0.070 - 0.222 kg H(2)O per M lactate. Free lactic acid concentration reached 16% with lactate flux of up to 300 g m(-2) h(-1). Stack energy consumption ranged from 0.6 to 1 kW h per kg lactate. Under optimised process conditions current efficiency during bi-polar electrodialysis was consistently around 90%. Glucose was further reduced from 2 to <1 g l(-1) in the free lactic acid solution. Acetic acid impurity remained at around 1 g l(-1). Significant reduction in colour and minerals in the product streams was observed during electrodialysis purification.  相似文献   

10.
We measured microclimate, field metabolic rates (FMRs), water flux, and activity patterns of telemetered box turtles (Terrapene carolina) in South Carolina from September 1987 to October 1988. Turtles were inactive for most of the winter and were active only sporadically during the rest of the year. Using the doubly labeled water method, we found that water flux averaged 8.8, 18.9, and 26.4 mL kg(-1) d(-1) in winter, spring, and summer/fall, respectively. FMR for the same periods averaged 0.028, 0.065, and 0.124 mL CO(2) g(-1) h(-1). Differences in FMR among seasons were significant but not between sexes. Using operative temperatures, we predicted standard and maximum metabolic rates of turtles. In winter, FMR was elevated above standard metabolic rates and close to maximum metabolic rates, whereas in spring and summer/fall, FMR fell midway between standard and maximum metabolic rates. We used a model to predict metabolic rates, geographical distribution, and potential reproductive output of box turtles across latitudes in eastern North America. Low FMR and low annual reproductive output may allow box turtles to survive and flourish in unpredictable resource environments by minimizing costs and risks, thereby maintaining greater lifetime reproductive success.  相似文献   

11.
Metabolic equivalent: one size does not fit all.   总被引:2,自引:0,他引:2  
The metabolic equivalent (MET) is a widely used physiological concept that represents a simple procedure for expressing energy cost of physical activities as multiples of resting metabolic rate (RMR). The value equating 1 MET (3.5 ml O2 x kg(-1) x min(-1) or 1 kcal x kg(-1) x h(-1)) was first derived from the resting O2 consumption (VO2) of one person, a 70-kg, 40-yr-old man. Given the extensive use of MET levels to quantify physical activity level or work output, we investigated the adequacy of this scientific convention. Subjects consisted of 642 women and 127 men, 18-74 yr of age, 35-186 kg in weight, who were weight stable and healthy, albeit obese in some cases. RMR was measured by indirect calorimetry using a ventilated hood system, and the energy cost of walking on a treadmill at 5.6 km/h was measured in a subsample of 49 men and 49 women (26-45 kg/m2; 29-47 yr). Average VO2 and energy cost corresponding with rest (2.6 +/- 0.4 ml O2 x kg(-1) x min(-1) and 0.84 +/- 0.16 kcal x kg(-1) x h(-1), respectively) were significantly lower than the commonly accepted 1-MET values of 3.5 ml O2 x kg(-1) x min(-1) and 1 kcal x kg(-1) x h(-1), respectively. Body composition (fat mass and fat-free mass) accounted for 62% of the variance in resting VO2 compared with age, which accounted for only 14%. For a large heterogeneous sample, the 1-MET value of 3.5 ml O2 x kg(-1) x min(-1) overestimates the actual resting VO2 value on average by 35%, and the 1-MET of 1 kcal/h overestimates resting energy expenditure by 20%. Using measured or predicted RMR (ml O2 x kg(-1) x min(-1) or kcal x kg(-1) x h(-1)) as a correction factor can appropriately adjust for individual differences when estimating the energy cost of moderate intensity walking (5.6 km/h).  相似文献   

12.
The effects of ambient temperatures (T(a)) from 10 degrees to 35 degrees C on metabolism, ventilation, and oxygen extraction were examined for the southern brown bandicoot (Isoodon obesulus). Oxygen consumption (VO2) followed the pattern typical for endotherms, decreasing with increasing T(a) from 10 degrees to 25 degrees C. It did not significantly change between Ta=25 degrees and 35 degrees C (the thermoneutral zone). VO2 was approximately 2.4 times higher at Ta=10 degrees C (0.967 mL O(2) g(-1) h(-1)) compared with basal (0.410 mL O(2) g(-1) h(-1)) at Ta=30 degrees C. While the metabolic rates of the bandicoots were basal at Ta=30 degrees C, respiratory frequency (f(R)) was 24.6 breaths min(-1), tidal volume (V(T)) was 7.79 mL, minute volume (V(I)) was 191.3 mL min(-1), and oxygen extraction efficiency (EO2) was 26.8%. Increased VO2 at Ta< or =25 degrees C was associated with a large increase in V(I) due to increases in V(T) and f(R). A greater proportion of the change was due to the increase in tidal volume. EO2 was constant at approximately 26% for all T(a) up to and including 30 degrees C. At Ta=35 degrees C, EO2 decreased to 17.7%, f(R) increased to 35.6 breaths min(-1), and V(T) decreased to 7.22 mL. The metabolic and ventilatory physiology of the southern brown bandicoot are typical of an unspecialized medium-sized marsupial.  相似文献   

13.
We report the first measurements of heart rate (f(H)) and the rate of oxygen consumption (V(O(2))) during flights from a species of bird larger than 500 g. V(O(2))was obtained from nine forward flapping flights of 8.9 min mean duration at a mean speed of 13.2 m s(-1) performed by three barnacle geese of mean mass 1.68 kg. Mean V(O(2))was 332 ml min(-1)or 201 ml min(-1) kg(-1). Sixteen flights were obtained from two of these birds equipped with heart rate data loggers, both when they were wearing a V(O(2)) mask and when they were not. During flights with the mask (mean duration 7.4 min), mean f(H) was 472 beats per min and during flights without the mask (mean duration 8.0 min) it was 391 beats per min. Heart rate was also measured in another goose flying without a respiratory mask and mean f(H) for all the three birds (mean mass 1.7 kg) flying without a mask for an average of 7.9 min at 13 m s(-1) was 378 beats per min. Resting f(H) for these three birds was 79 beats per min. The values of f(H) during flight are greater than those obtained from the same species during their autumn migration from Spitsbergen to southern Scotland. The possible reasons for this are discussed.  相似文献   

14.
The doubly labeled water (DLW) method for studying energy and water balance in field-active animals is not feasible for freshwater animals during aquatic activities, but several species of nominally aquatic reptiles leave wetlands for several critical and extended behaviors, where they face challenges to their energy and water balance. Using DLW, we studied energy and water relations during terrestrial estivation and movements in the eastern long-necked turtle (Chelodina longicollis), a species that inhabits temporary wetlands in southeastern Australia. Water efflux rates of 14.3-19.3 mL (kg d)(-1 ) during estivation were nearly offset by influx, indicating that turtles did not maintain water balance while terrestrial, though dehydration was slow. Estivation energy expenditure declined over time to 20.0-24.6 kJ (kg d)(-1) but did not indicate substantial physiological specializations. Energy reserves are predicted to limit survival in estivation to an estimated 49-261 d (depending on body fat), which is in close agreement with observed bouts of natural estivation in this population. The energy cost and water flux rates associated with overland movement behavior ranged from 46 to 99 kJ (kg d)(-1 ) and from 21.6 to 40.6 mL (kg d)(-1), respectively, for turtles moving 23-34 m d(-1). When a wetland dries, a turtle that forgoes movement to other wetlands can save sufficient energy to fuel up to 134 d in estivation. The increasing time in estivation with travel distance gained in this energy "trade-off" fits our previous observations that more turtles estivate when longer distances must be traveled to the nearest permanent lake, whereas emigration is nearly universal when only short distances must be traversed. The DLW method shows promise for addressing questions regarding the behavioral ecology and physiology of freshwater turtles in terrestrial situations, though validation studies are needed.  相似文献   

15.
In Japanese quail (Coturnix c. japonica; n = 9), the doubly labeled water (DLW) method ((2)H, (18)O) for estimation of CO(2) production (l/day) was validated. To evaluate its sensitivity to water efflux levels (r(H(2))O(e); g/day) and to assumptions of fractional evaporative water loss (x; dimensionless), animals were repeatedly fed a dry pellet diet (average r(H(2))O(e) of 34.8 g/day) or a wet mash diet (95.8 g/day). We simultaneously compared the novel infrared laser spectrometry (LS) with isotope ratio mass spectrometry. At low r(H(2))O(e), calculated CO(2) production rate exhibited little sensitivity to assumptions concerning x, with the best fit being found at 0.51, and only little error was made employing an x value of 0.25. In contrast, at high r(H(2))O(e), sensitivities were much higher with the best fit at x = 0.32. Conclusions derived from isotope ratio mass spectrometry and LS were similar, proving the usefulness of LS. Within a threefold range of r(H(2))O(e), little error in the DLW method is made when assuming one single x value of 0.25 (recommended by Speakman JR, Doubly Labelled Water. Theory and Practice. London: Chapman & Hall, 1997), indicating its robustness in comparative studies.  相似文献   

16.
Six endurance-trained men [peak oxygen uptake (V(O(2))) = 4.58 +/- 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 +/- 2% peak V(O(2)) in an environmental chamber maintained at 35 degrees C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 microCi [3-(3)H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (R(a)) in Con trial] and glucose disappearance (R(d)), were measured using a primed, continuous infusion of [6,6-(2)H]glucose, corrected for gut-derived glucose (gut R(a)) in the CHO trial. No differences in heart rate, V(O(2)), respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut R(a) after 30 and 50 min (16 +/- 5 micromol. kg(-1). min(-1)) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose R(d) was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 +/- 6.3 vs 34.6 +/- 3.8 micromol. kg(-1). min(-1), CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of approximately 1.0 g/min, increases glucose R(d) but does not blunt the rise in HGP during exercise in the heat.  相似文献   

17.
Changes in activity related oxygen consumption were measured in leatherback and olive ridley sea turtle hatchlings over their first month after emergence from the nest. Leatherbacks emerged with 75-90 KJ of energy in the residual yolk for growth and activity whereas olive ridleys emerged with 45 KJ. In leatherbacks (n=8), resting mass-specific oxygen consumption rates decreased by 53% over the first post-hatching month (0.34+0.03 mL O(2) h(-1) g(-1) to 0.16+0.01 mL O(2) h(-1) g(-1), respectively), while for ridleys (n=8) the fall was 35% (0.20+0.03 mL O(2) h(-1) g(-1) to 0.13+0.01 mL O(2) h(-1) g(-1), respectively). Olive ridley factorial aerobic scope doubled (1.93+0.30 to 3.97+0.51) over the first month but there was no significant increase in leatherback factorial aerobic scope (1.39+0.21 to 1.60+0.13). Leatherback hatchlings gained on average 20% initial body mass (7.68+1.66 g) over the first week, with 70 to 80% of this increase due to water accumulation. Olive ridleys gained 14% (1.83+0.16 g) in initial mass over the first week of age. We propose that the differences in aerobic scope and energy reserves are related to differences in early life ecological stratagems of these species.  相似文献   

18.
The ability to measure the energy expenditure of free-ranging animals is of great importance but the techniques available each have their limitations. Recently, as an alternative to more established techniques, an integrated measure of body acceleration termed overall dynamic body acceleration (ODBA) has been used as a calibrated proxy for rate of oxygen consumption (V(O(2))) and hence metabolic rate. The present study tested the potential of this technique, firstly by expanding the range of species for which the V(O(2))-ODBA relationship has been defined and secondly by undertaking a validation exercise to explore the accuracy of predictions made using ODBA. V(O(2))-ODBA relationships during terrestrial locomotion were established for several bipedal and quadrupedal endotherms and compiled with similar relationships previously determined in other species. A model incorporating all of these species showed that ODBA is an excellent predictor of V(O(2)) but there is variation in the V(O(2))-ODBA relationship between species, and further variation within some species. Including measurements such as body mass and structural size in prediction equations might further improve the predictive power of the 'ODBA technique' and eliminate species-specific differences. In the validation exercise, estimate errors were calculated for the species-specific predictive equations. The use of ODBA to estimate V(O(2)) was valid across all species examined and may show a greater potential for estimating energy expenditure for individual animals than other techniques.  相似文献   

19.
A clear protection of the gastrointestinal tract and an evident anti-inflammatory effect were shown for a novel stomach pentadecapeptide BPC 157 (i.p./i.g.) in comparison with several reference standards in various ulcer models along with a protection of endothelium and particular interaction with the NO-system. Thus, we evaluated whether this pentadecapeptide along with other gastroprotective agents could affect angiogenesis and the healing process in vivo using a procedure initially described by Szabo and co-workers. In each rat, two sterile sponges (1 x 1 x 0.25 cm; V = 0.25 mL) with the same quantities of BPC 157 (10 ng x mL(-1), 10 microg x mL(-1), 50 microg x kg(-1)) or reference agents (cimetidine: 10, 100, 500 mg x mL(-1); ranitidine: 2.5, 25, 250 mg x mL(-1); famotidine: 10, 50, 100 mg x mL(-1); omeprazole: 10, 50, 100 mg x mL(-1); sucralfate: 1, 5, 10 mg x mL(-1) were implanted subcutaneously in the lumbar region. The sponges were removed after 3 or 7 d, fixed in formalin, and processed for histologic and histochemical evaluation and morphometry assessment. Compared with the control values, the number of newly formed endothelial spaces inside newly formed granulation tissue was markedly increased in all animals treated with BPC 157, cimetidine, ranitidine, famotidine, sucralfate and omeprazole, a consistent finding noted after either 3 or 7 d. Compared with control values, markedly more granulation tissue was noted in the rats in the groups of animals treated with BPC 157 (50 microg) and in the rats treated with sucralfate in all dosages used, euthanized after 3 d. In all groups treated with H2-blockers however, similar values to those of controls were noted. Thus, it could be concluded that an evident angiogenic property was consistently noted for the novel pentadecapeptide BPC 157, H2-blockers (cimetidine, famotidine and ranitidine) and omeprazole, besides the well known angiogenic effect of sucralfate. Furthermore, unlike H2-blockers and omeprazole, BPC 157 stimulates the formation of granulation tissue, suggesting a particular activity, similar to that previously noted for sucralfate.  相似文献   

20.
The aim of this study was to determine whether repeated exposure to hypoxemia would modify the response to hypoxemia during maturation. We exposed piglets to three 1-h cycles of hypoxemia (PaO2 = 30 to 35 mmHg; 1 mmHg = 133.3 Pa) at 1 week (n = 9), 2-3 weeks (n = 10), and 4-5 weeks of age (n = 10). O2 consumption (V(O2)) and CO2 production (V(CO2)) were measured, and alveolar ventilation (V(A)) was derived from V(CO2) and PaCO2. Levels of lactic acid (lactate) and serum catecholamines were also measured. With hypoxemia, time had a significant effect on V(O2) and body temperature in an age-dependent fashion: that is, whereas the 1 week group and the 4-5 week group showed both variables decreasing over time, the 2-3 week group showed no drop in V(O2) and a small increase in body temperature over time. Lactate levels increased with hypoxemia in all animals during the first exposure. However, with repeated exposures to hypoxemia, only the 2-3 week group continued to increase its lactate levels. Furthermore, the changes in lactate levels paralleled the changes in epinephrine levels with hypoxemia. We found, too, that although V(A) increased significantly with hypoxemia in all animals, this change was not modified by age or repeated exposures. No significant effects of age or repeated exposures were found in the cardiovascular response to hypoxemia. We concluded that, from a metabolic viewpoint, after repeated exposures to hypoxemia the 2-3 week animals responded differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号