首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Liquid chromatography/electrospray ionization/mass spectrometry (LC/ESI/MS) was used to determine intact phospholipid profiles for five reference pseudomonad strains harboring different (aerobic) toluene catabolic pathways: Pseudomonas putida mt-2, Pseudomonas putida F1, Burkholderia cepacia G4, Burkholderia pickettii PKO1, and Pseudomonas mendocina KR1. These five strains contained a predominant pool of phosphatidylethanolamines. Other phospholipids identified include phosphatidylglycerol, phosphatidylserine, phosphatidylmethylethanolamine, and phosphatidyldimethylethanolamine. There was a clear separation in phospholipid profiles that allows for the differentiation between the Pseudomonas and Burkholderia genera. Factor analysis of the phospholipid profiles showed that B. cepacia G4, P. putida mt-2, and B. pickettii PKO1 were clearly separated, while P. putida F1 and P. mendocina KR1 were clustered as a group. These results suggest that intact phospholipid profiling could be used to evaluate the relative abundance of specific degraders in bioreactors or in aquifer material. Nevertheless, the usefulness of this technique for taxonomic characterization of such complex samples remains to be demonstrated because of potential confounding effects of overlapping profiles and potential changes in phospholipid composition due to different growth conditions.  相似文献   

2.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

3.
13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.  相似文献   

4.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight]−1 h−1). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

5.
The water contaminant N-nitrosodimethylamine (NDMA) is a probable human carcinogen whose appearance in the environment is related to the release of rocket fuel and to chlorine-based disinfection of water and wastewater. Although this compound has been shown to be biodegradable, there is minimal information about the organisms capable of this degradation, and little is understood of the mechanisms or biochemistry involved. This study shows that bacteria expressing monooxygenase enzymes functionally similar to those demonstrated to degrade NDMA in eukaryotes have the capability to degrade NDMA. Specifically, induction of the soluble methane monooxygenase (sMMO) expressed by Methylosinus trichosporium OB3b, the propane monooxygenase (PMO) enzyme of Mycobacterium vaccae JOB-5, and the toluene 4-monooxygenases found in Ralstonia pickettii PKO1 and Pseudomonas mendocina KR1 resulted in NDMA degradation by these strains. In each of these cases, brief exposure to acetylene gas, a suicide substrate for certain monooxygenases, inhibited the degradation of NDMA. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene monooxygenases found in strains PKO1 and KR1 mimicked the behavior of the parent strains. In contrast, M. trichosporium OB3b expressing the particulate form of MMO, Burkholderia cepacia G4 expressing the toluene 2-monooxygenase, and Pseudomonas putida mt-2 expressing the toluene sidechain monooxygenase were not capable of NDMA degradation. In addition, bacteria expressing aromatic dioxygenases were not capable of NDMA degradation. Finally, Rhodococcus sp. RR1 exhibited the ability to degrade NDMA by an unidentified, constitutively expressed enzyme that, unlike the confirmed monooxygenases, was not inhibited by acetylene exposure.  相似文献   

6.
Chloroform mineralization by toluene-oxidizing bacteria.   总被引:6,自引:4,他引:2       下载免费PDF全文
K McClay  B G Fox    R J Steffan 《Applied microbiology》1996,62(8):2716-2722
Seven toluene-oxidizing bacterial strains (Pseudomonas mendocina KR1, Burkholderia cepacia G4, Pseudomonas putida F1, Pseudomonas pickettii PKO1, and Pseudomonas sp. strains ENVPC5, ENVBF1, and ENV113) were tested for their ability to degrade chloroform (CF). The greatest rate of CF oxidation was achieved with strain ENVBF1 (1.9 nmol/min/mg of cell protein). CF also was oxidized by P. mendocina KR1 (0.48 nmol/min/mg of cell protein), strain ENVPC5 (0.49 nmol/min/mg of cell protein), and Escherichia coli DH510B(pRS202), which contained cloned toluene 4-monooxygenase genes from P. mendocina KR1 (0.16 nmol/min/mg of cell protein). Degradation of [14C]CF and ion analysis of culture extracts revealed that CF was mineralized to CO2 (approximately 30 to 57% of the total products), soluble metabolites (approximately 15%), a total carbon fraction irreversibly bound to particulate cellular constituents (approximately 30%), and chloride ions (approximately 75% of the expected yield). CF oxidation by each strain was inhibited in the presence of trichloroethylene, and acetylene significantly inhibited trichloroethylene oxidation by P. mendocina KR1. Differences in the abilities of the CF-oxidizing strains to degrade other halogenated compounds were also identified. CF was not degraded by B. cepacia G4, P. putida F1, P. pickettii PKO1, Pseudomonas sp. strain ENV113, or P. mendocina KRMT, which contains a tmo mutation.  相似文献   

7.
Pseudomonas putida mt-2, P. cepacia G4, P. mendocina KR1, and P. putida F1 degrade toluene through different pathways. In this study, we compared the competition behaviors of these strains in chemostat culture at a low growth rate (D = 0.05 h-1), with toluene as the sole source of carbon and energy. Either toluene or oxygen was growth limiting. Under toluene-limiting conditions, P. mendocina KR1, in which initial attack is by monooxygenation of the aromatic nucleus at the para position, outcompeted the other three strains. Under oxygen limitation, P. cepacia G4, which hydroxylates toluene in the ortho position, was the most competitive strain. P. putida mt-2, which metabolizes toluene via oxidation of the methyl group, was the least competitive strain under both growth conditions. The apparent superiority of strains carrying toluene degradation pathways that start degradation by hydroxylation of the aromatic nucleus was also found during competition experiments with pairs of strains of P. cepacia, P. fluorescence, and P. putida that were freshly isolated from contaminated soil.  相似文献   

8.
We assayed the tolerance to solvents of three toluene-degrading Pseudomonas putida strains and Pseudomonas mendocina KR1 in liquid and soil systems. P. putida DOT-T1 tolerated concentrations of heptane, propylbenzene, octanol, and toluene of at least 10% (vol/vol), while P. putida F1 and EEZ15 grew well in the presence of 1% (vol/vol) propylbenzene or 10% (vol/vol) heptane, but not in the presence of similar concentrations of octanol or toluene. P. mendocina KR1 grew only in the presence of heptane. All three P. putida strains were able to become established in a fluvisol soil from the Granada, Spain, area, whereas P. mendocina KR1 did not survive in this soil. The tolerance to organic solvents of all three P. putida strains was therefore assayed in soil. The addition to soil of 10% (vol/wt) heptane or 10% (vol/wt) propylbenzene did not affect the survival of the three P. putida strains. However, the addition of 10% (vol/wt) toluene led to an immediate decrease of several log units in the number of CFU per gram of soil for all of the strains, although P. putida F1 and DOT-T1 subsequently recovered. This recovery was influenced by the humidity of the soil and the incubation temperature. P. putida DOT-T1 recovered from the shock faster than P. putida F1; this allowed the former strain to become established at higher densities in polluted sites into which both strains had been introduced.  相似文献   

9.
13C/(12)C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation.  相似文献   

10.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

11.
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.  相似文献   

12.
The aim of the study was to investigate whether toxic fine chemical production can be improved using the solvent-tolerant Pseudomonas putida S12 in a two-liquid-phase system consisting of aqueous media and a water-immiscible octanol phase with production of 3-methylcatechol from toluene as the model conversion. For this purpose the genes involved in this conversion, todC1C2BAD from P. putida F1, were introduced into P. putida S12 with high stable expression. Production of 3-methylcatechol was monitored in batch incubations with different media using a single medium and a two-liquid medium–octanol system. The maximum concentration of 3-methylcatechol increased two-fold using the two-liquid medium–octanol system, irrespective of the selected medium. Received: 29 December 1999 / Received revision: 29 February 2000 / Accepted: 6 March 2000  相似文献   

13.
The chemotactic responses of Pseudomonas putida F1, Burkholderia cepacia G4, and Pseudomonas stutzeri OX1 were investigated toward toluene, trichloroethylene (TCE), tetrachloroethylene (PCE), cis-1,2-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), 1,1-dichloroethylene (1,1-DCE), and vinyl chloride (VC). P. stutzeri OX1 and P. putida F1 were chemotactic toward toluene, PCE, TCE, all DCEs, and VC. B. cepacia G4 was chemotactic toward toluene, PCE, TCE, cis-DCE, 1,1-DCE, and VC. Chemotaxis of P. stutzeri OX1 grown on o-xylene vapors was much stronger than when grown on o-cresol vapors toward some chlorinated ethenes. Expression of toluene-o-xylene monooxygenase (ToMO) from touABCDEF appears to be required for positive chemotaxis attraction, and the attraction is stronger with the touR (ToMO regulatory) gene.  相似文献   

14.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight] h). All four strains were maintained in the mixed culture at comparable numbers when TCE was absent. After the start of the addition of TCE, the viabilities of B. cepacia G4 and P. putida F1 and GJ31 decreased 50- to 1,000-fold in 1 month. These bacteria can degrade TCE, although at considerably different rates. P. putida mt-2, which did not degrade TCE, became the dominant organism. Kinetic analysis showed that the presence of TCE caused up to a ninefold reduction in the affinity for toluene of the three disappearing strains, indicating that inhibition of toluene degradation by TCE occurred. While P. putida mt-2 took over the culture, mutants of this strain which could no longer grow on p-xylene arose. Most of them had less or no meta-cleavage activity and were able to grow on toluene with a higher growth rate. The results indicate that cometabolic degradation of TCE has a negative effect on the maintenance and competitive behavior of toluene-utilizing organisms that transform TCE.  相似文献   

15.
 To examine the trichloroethylene (C2HCl3)-degrading capability of five microorganisms, the maximum rate, extent, and degree of C2HCl3 mineralization were evaluated for Pseudomonas cepacia G4, Pseudomonas cepacia G4 PR1, Pseudomonas mendocina KR1, Pseudomonas putida F1, and Methylosinus trichosporium OB3b using growth conditions commonly reported in the literature for expression of oxygenases responsible for C2HCl3 degradation. By varying the C2HCl3 concentration from 5 μM to 75 μM, V max and K m values for C2HCl3 degradation were calculated as 9 nmol/(min mg protein) and 4 μM for P. cepacia G4, 18 nmol/(min mg protein) and 29 μM for P. cepacia G4 PR1, 20 nmol/(min mg protein) and 10 μM for P. mendocina KR1, and 8 nmol/(min mg protein) and 5 μM for P. putida F1. This is the first report of these Michaelis-Menten parameters for P. mendocina KR1, P. putida F1, and P. cepacia G4 PR1. At 75 μM, the extent of C2HCl3 that was degraded after 6 h of incubation with resting cells was 61%–98%; the highest degradation being achieved by toluene-induced P. mendocina KR1. The extent of C2HCl3 mineralization in 6 h (as indicated by concentration of chloride ion) was also measured and varied from 36% for toluene-induced P. putida F1 to 102% for M. trichosporium OB3b. Since C2HCl3 degradation requires new bio-mass, the specific growth rate (μmax) of each of the C2HCl3-degradation microorganisms was determined and varied from 0.080/h (M. trichosporium OB3b) to 0.864/h (P. cepacia G4 PR1). Received: 1 May 1995/Received revision: 11 July 1995/Accepted: 26 July 1995  相似文献   

16.
The potential of trichloroethylene (TCE) to induce and non-aromatic growth substrates to support TCE degradation in five strains (Pseudomonas mendocina KR1, Ralstonia pickettii PKO1, Pseudomonas putida F1, Burkholderia cepacia G4, B. cepacia PR1) of toluene-oxidizing bacteria was examined. LB broth and acetate did not support TCE degradation in any of the wild-type strains. In contrast, fructose supported the highest specific levels of TCE oxidation observed in each of the strains tested, except B. cepacia G4. We discuss the potential mechanisms and implications of this observation. In particular, cells of P. mendocina KR1 degraded significant amounts of TCE during cell growth on non-aromatic substrates. Apparently, TCE degradation was not completely constrained by any given factor in this microorganism, as was observed with P. putida F1 (TCE was an extremely poor substrate) or B. cepacia G4 (lack of oxygenase induction by TCE). Our results indicate that multiple physiological traits are required to enable useful TCE degradation by toluene-oxidizing bacteria in the absence of aromatic cosubstrates. These traits include oxygenase induction, effective TCE turnover, and some level of resistance to TCE mediated toxicity.  相似文献   

17.
The stability of Pseudomonas putida F1, a strain harbouring the genes responsible for toluene degradation in the chromosome was evaluated in a bioscrubber under high toluene loadings and nitrogen limiting conditions at two dilution rates (0.11 and 0.27 h−1). Each experiment was run for 30 days, period long enough for microbial instability to occur considering previously reported studies carried out with bacterial strains encoding the catabolic genes in the TOL plasmid. At all tested conditions, P. putida F1 exhibited stable performance as shown by the constant values of the specific toluene degradation yield, CO2 produced versus toluene degraded yield, and biomass concentration within each steady state. Benzyl alcohol, a curing agent causing TOL plasmid deletion in Pseudomonas strains, was present in the cultivation medium as a result of the monooxygenation of toluene by the diooxygenase system of P. putida F1. However, no mutant population growing at the expense of the extracellular excreted carbon or lysis products was established in the chemostat as confirmed by the constant dissolved total organic carbon (TOC) concentration and fraction of toluene degrading cells (approx. 100%). In addition, batch experiments conducted with both lysis substrate and toluene simultaneously confirmed that P. putida F1 preferentially consumed toluene rather than extracellular excreted carbon.  相似文献   

18.
Alternative substrates for the toluene 2,3-dioxygenase pathway of several pseudomonads served as enzyme-activity-dependent fluorescent probes for the bacteria. Phenylacetylene and cinnamonitrile were transformed to fluorescent and brightly colored products by Pseudomonas putida F1, Pseudomonas fluorescens CFS215, and Burkholderia (Pseudomonas) strain JS150. Active bacteria transformed phenylacetylene, producing bright yellow solutions containing the putative product 2-hydroxy-6-oxo-7-octyn-2,4-dienoate. Transformation of cinnamonitrile resulted in bright orange solutions due to accumulation of the putative product 2-hydroxy-6-oxo-8-cyanoocta-2,4,7-trienoate. Chemical and physical properties of the products supported their identification, which indicated that the first three enzymes of the pathway catalyzed product formation. Phenylacetylene labeled bacteria with green fluorescence emission; bacteria were concentrated on black 0.2-μm-pore-size polycarbonate filters containing polyvinylpyrrolidone (PVP) as a wetting agent. Bacteria labeled with cinnamonitrile were fluorescent orange; labeling was effective with bacteria trapped on PVP-free polycarbonate filters. Production of the enzymes involved in labeling of P. putida F1 and P. fluorescens CFS215 was induced by growth (on arginine) in the presence of toluene; cells grown on arginine without toluene were not labeled. Labeling of P. putida F1 by phenylacetylene was inhibited by toluene, indicating that the same enzymatic pathway was required for transformations of both substrates. Bacteria expressing other toluene-degrading enzymatic pathways were not fluorescently labeled with phenylacetylene. Received: 30 July 1997 / Received revision: 1 November 1997 / Accepted: 21 November 1997  相似文献   

19.
The use of peptide mass fingerprinting with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was demonstrated to identify and phenotypically characterize toluene-degrading bacteria via biomarkers of degradation and taxonomical classification. Pseudomonas putida F1, P. mendocina KR1, and Burkholderia sp. JS150 were grown on toluene, extracted, electrophoretically separated, and analyzed by MALDI-TOF MS. Catabolic enzymes were identified and results substantiated using tandem MS.  相似文献   

20.
The active efflux system contributing to the solvent tolerance of Pseudomonas putida S12 was characterized physiologically. The mutant P. putida JK1, which lacks the active efflux system, was compared with the wild-type organism. None of 20 known substrates of common multi-drug-resistant pumps had a stronger growth-inhibiting effect on the mutant than on the wild type. The amount of [14C]toluene accumulating in P. putida S12 increased in the presence of the solvent xylene and in the presence of uncouplers. The effect of uncouplers confirms the proton dependency of the efflux system in P. putida S12. Other compounds, potential substrates for the solvent pump, did not affect the accumulation of [14C]toluene. These results show that the efflux system in P. putida S12 is specific for organic solvents and does not export antibiotics or other known substrates of multi-drug-resistant pumps. Received: 15 February 2000 / Received revision: 16 June 2000 / Accepted: 18 June 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号