首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method has been developed for the preparation of large single-stranded DNA sequencing templates from primary cloning plasmids or cosmids. The method utilizes the separate action of T7 Gene 6 exonuclease and exonuclease III to generate large quantities of single-stranded template for each strand of a large-cloned fragment. Since the procedure is intended for use on primary clones, it avoids the time-consuming subcloning steps associated with most sequencing programs. The procedure also has the advantage of avoiding clone instability problems associated with subcloning in M13.  相似文献   

2.
3.
We have compared the capacity of the large fragment of E. coli DNA polymerase I and highly purified DNA polymerases alpha from either Drosophila melanogaster embryos or calf thymus to replicate single-stranded M13 mp10 DNA treated with the antitumoral drug cis-diamminedichloroplatinum(II) (cis-DDP). We report that: a) although prokaryotic and eukaryotic enzymes have different structural complexity and dissimilar in vivo functions, their synthesis was blocked in vitro at similar sites on cis-DDP treated DNA; b) this inhibition occurred not only at d(G)n sequences, as previously reported for E. coli DNA polymerase I, (Pinto & Lippard (1985) Proc. Natl. Acad. Sci. USA, 82, 4616-4619) but also at other sequences which may represent putative cis-DDP-DNA adducts.  相似文献   

4.
5.
The origin of replication of plasmid pT181 is nicked by the plasmid-encoded RepC protein. The free 3'-hydroxyl end at the nick is presumably used as primer for leading strand DNA synthesis. In vitro replication of pT181 was found to generate single-stranded DNA in addition to the supercoiled, double-stranded DNA. The single-stranded DNA was circular and corresponded to the pT181 leading strand. Recombinant plasmids were constructed that contain two pT181 origins of replication in either direct or inverted orientation. In vitro replication of the plasmid carrying two origins in direct orientation was shown to generate circular, single-stranded DNA that corresponded to initiation of replication at one origin sequence and termination at the other origin. These results demonstrate that the origin of pT181 leading strand DNA replication also serves as the site for termination of replication. Interestingly, the presence of two origins in inverted orientation resulted in initiation of replication at one origin and stalling of the replisome at the other origin. These results suggest that RepC can reinitiate replication at the second origin by nicking partially replicated, relaxed DNA. These data are consistent with the replication of pT181 by a rolling circle mechanism and indicate that single-stranded DNA is an intermediate in pT181 replication.  相似文献   

6.
Bacteriophage phi X174 and M13 mp9 single-stranded DNA molecules were primed either with restriction fragments or synthetic primers and irradiated with near UV light in the presence of promazine derivatives. These DNAs were used as template for in vitro complementary chain synthesis by Escherichia coli DNA polymerase I large fragment. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis of the synthesis products and localized by comparison with a standard dideoxy sequencing pattern. More than 90% of the chain terminations were mapped exactly one nucleotide before a guanine residue. In addition, photoreaction was shown to occur more predominantly with guanine residues localized in single-stranded parts of the genome. The same guanine residues could also be damaged when the reaction was performed, in the dark, in the presence of the artificially generated promazine cation radicals. Using the BamHI-SmaI adaptor (5'GATCCCCGGG-3'), it was shown that the guanine alteration was a covalent addition of the promazine, or of a cation radical photodegradation product, on the guanine moiety. Kinetics of chlorpromazine photoaddition on single-stranded and double-stranded DNAs were determined.  相似文献   

7.
In vitro studies have demonstrated that single-stranded DNA molecules containing the 3' terminal nucleotides of the PRD1 DNA replication origin can support initiation by a protein-primed mechanism. We have determined the minimal requirements for priming by analyzing the template activity of various deletion derivatives. Our results showed that the 3'-terminal 15 nucleotides of the replication origin are sufficient for priming. The finding that the requirements for recognition of replication origin are different from those for priming suggests that there are two distinct steps during initiation of PRD1 DNA replication: first, recognition of the replication origin on double-stranded DNA and second, the priming event on single-stranded DNA. In addition our results showed that additional bases at the 3' end of templates did not affect priming activity, suggesting that the priming site is searched for from inside the template.  相似文献   

8.
D S Ray  J C Hines  M H Kim  R Imber  N Nomura 《Gene》1982,18(3):231-238
M13 cloning vectors have been developed for the selection of DNA sequences capable of directing initiation of DNA synthesis on single-stranded templates. These vectors are derived from viable M13 mutants containing large deletions in the region of the complementary strand origin. The deletion mutants are defective in the conversion of viral single strands to the duplex replicative form (SS leads to RF) both in vivo and in vitro, give a reduced phage yield and form turbid plaques. A receptor site for foreign single strand initiation determinants has been introduced into the mutants by the insertion of EcoRI linker sequences at the deletion sites. Specific cloned sequences from bacteriophage G4 RF and from Co1E1 DNA restore a clear plaque type and normal phage growth. Selection of clear-plaque isolates obtained by transfection with RF from one of these vectors, M13 delta E101, carrying inserted Co1E1 HaeIII fragments resulted in the selective cloning of one specific fragment, the HaeIII-E fragment. Insertion of either the H or L strand of the HaeIII-E fragment into the M13 delta E101 viral strand gives a clear plaque phenotype, indicating the presence of initiation determinants on both the H- and L-strands of the Co1E1 HaeIII-E fragment. These cloning vectors provide a new means for the functional dissection of replication origins and for the identification of DNA sequences that determine the enzymatic mechanism of discontinuous synthesis along the length of the bacterial chromosome. The ability to assess initiation capability on the basis of plaque morphology also provides a means for rapid genetic analysis of initiation determinants.  相似文献   

9.
10.
Three different methods have been used to determine the rate at which an individual bacteriophage T4 DNA polymerase molecule moves when synthesizing DNA on a single-stranded DNA template chain. These methods agree in suggesting an in vitro rate for this enzyme of about 250 nucleotides per second at 37 °C. This rate is close to the rate at which bacteriophage T4 replication forks move in vivo (about 500 nucleotides per second). Comparison with the overall amount of DNA synthesis seen in in vitro reactions reveals that only a small fraction of the T4 DNA polymerase molecules present are synthesizing DNA at any one time. This is explicable in terms of the limited processivity of the enzyme in these reactions, along with its capacity for non-productive DNA binding to the DNA template molecules.  相似文献   

11.
Assays have been described in which duplex adeno-associated virus (AAV) DNA can be replicated in HeLa cell extracts with exogenous AAV Rep protein. These assays appear to mimic the AAV DNA replication that occurs in the cell, including the ability of extracts from adenovirus (Ad)-infected cells to replicate duplex AAV DNA templates more efficiently than extracts from uninfected cells can. We showed previously that the Ad-infected extract was able to support a more processive replication than the uninfected extract. When the Ad single-stranded DNA binding protein (Ad-DBP) was added to an uninfected extract, DNA replication became processive. Based on a strand displacement replication model, we hypothesized that the Ad-DBP was stabilizing the displaced single-stranded DNA during strand displacement replication. In this report, we show that in Ad-infected extracts most of the newly replicated duplex DNA is converted into a single-stranded form shortly after synthesis. Using the results of assays for the replication of single-stranded AAV DNA, we show that these single-stranded molecules serve as templates for additional replication. In addition, we identify a class of molecules which are likely to be intermediates of replication on single-stranded templates. We discuss a possible role for replication of single-stranded molecules in the infected cell.  相似文献   

12.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

13.
M Méchali  R M Harland 《Cell》1982,30(1):93-101
We describe a eucaryotic in vitro system for DNA replication derived from Xenopus eggs. In this system, priming and elongation of DNA chains occurs with unusually high efficiency on single-stranded circular DNA templates. Up to 1.5 micrograms M13 DNA can be converted to a completely double-stranded form by 100 microliters egg extract in 1 hr at 22 degrees C, a rate of synthesis comparable with the fastest rates of chromosomal DNA synthesis in early embryogenesis. Initiation of DNA synthesis on double-stranded circular DNA templates was undetectable however. The enzymatic events responsible for complementary-strand synthesis in vitro resemble those presumed to act at the lagging strand of the eucaryotic replication fork in vivo in three ways. First, inhibitor studies indicate that DNA polymerase alpha is required. Second, priming of DNA synthesis by oligoribonucleotides is strongly supported by the complete dependence on ribonucleoside triphosphates in the assay, and the detection of an oligoribonucleotide terminus of 9 or possibly 10 nucleotides associated with nascent DNA chains. Third, the priming reaction is resistant to alpha-amanitin.  相似文献   

14.
Double-stranded, full-length linear DNA was synthesized in vitro by using single-stranded linear DNA as a self-priming template from the parvovirus Kilham rat virus and Escherichia coli DNA polymerase "large fragment" as the polymerizing enzyme. To ascertain the order of the synthesis of the cleavage fragments and to assess the accuracy of the in vitro synthesis, restriction endonuclease cleavage sites with known recognition sequences were mapped on the DNA. Comparing the cleavage pattern of the synthesized DNA with that of double-stranded viral DNA isolated from infected cells confirms that the in vitro synthesis produces a faithful copy of the viral single-stranded genome. Electron micrographs of the in vitro product reveal it to be a double-stranded linear molecule.  相似文献   

15.
Sequence-specific pausing occurs during DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase holoenzyme in the presence of the T4 helix destabilizing protein (gene 32 protein). Two of the six strongest pause sites on a double-stranded bacteriophage fd DNA template are in regions where hairpin helices are predicted to form when the DNA is single stranded. However, the other pause sites are in regions that are not obviously involved in secondary structure. The positions of the DNA chain ends produced at one pause site of each type were determined to within +/- 2 nucleotides. At this resolution, a clustering of sites is observed, suggesting that the polymerase holoenzyme may become destabilized when moving along selected regions of the DNA and then pause at one or more of several closely spaced positions. The addition of the T4 gene 41 protein (a DNA helicase that forms part of the T4 primosome) to the above replication system greatly increases the rate of fork movement and eliminates detectable pausing. In contrast, the addition of the T4 dda protein (a second DNA helicase that increases the rate of fork movement to a similar extent) has no affect on replication fork pausing. This difference could either be due to specific protein-protein interactions formed between the polymerase holoenzyme and the 41 protein or to the highly processive movement of the 41 protein along the displaced DNA strand.  相似文献   

16.
17.
The effect of DnaB helicase on the initiation specificity of primase was studied biochemically using a series of single-stranded DNA templates in which each nucleotide of the trinucleotide d(CTG) initiation sequence was systematically varied. DnaB helicase accelerated the rate of primer syntheisis, prevented "overlong" primers from forming and decreased the initiation specificity of primase. In the presence of DnaB helicase, all trinucleotides could serve as the primer initiation site although there was a distinct preference for d(CAG). These data may explain the high chromosomal prevalence of octanucleotides containing CTG on the leading strand and its complement CAG on the lagging strand. The specificity of DnaB helicase places it on the lagging strand template where it stimulates the initiation of Okazaki fragment synthesis. In the absence of DnaB helicase, primase preferentially primed the d(CTG) template. In the presence of DnaB helicase, the initiation preference was not only altered but also the preferred initiating nucleotide was found to be GTP rather than ATP, for both the d(CTG) and the d(CAG) templates. This suggested that the specificity of primase for the d(CTG) initiation trinucleotide was predominantly unaffected in the absence of DnaB helicase on short ssDNA templates, whereas in conjunction with DnaB helicase, the specificity was altered and this alteration has significant implications in the replication of Escherichia coli chromosome in vivo.  相似文献   

18.
The DNA polymerase activity of the near homogeneous, multisubunit DNA polymerase-primase from Drosophila melanogaster embryos has been compared to Escherichia coli DNA polymerase III core, DNA polymerase III, and DNA polymerase III holoenzyme. The rate of deoxynucleotide incorporation by the Drosophila polymerase on singly primed phi X174 DNA is similar to that observed with equivalent levels of DNA polymerase III holoenzyme in the absence of E. coli single-stranded DNA binding protein. However, analysis of the DNA products indicates that the Drosophila polymerase is less processive than DNA polymerase III holoenzyme, and closely resembles DNA polymerase III. The Drosophila polymerase-primase contains neither 3'-5' exonuclease nor RNase H-like activities, and catalyzes no significant pyrophosphate exchange. There is a low level of DNA-dependent ATPase activity which can be eliminated by a second glycerol gradient sedimentation (Kaguni, L.S., Rossignol, J.-M., Conaway, R.C., and Lehman, I.R. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 2221-2225). Although lacking a 3'-5' exonuclease, the replication fidelity of the D. melanogaster polymerase is similar to that of E. coli DNA polymerase III holoenzyme which possesses such an activity.  相似文献   

19.
To determine whether cellular replication factors can influence the fidelity of DNA replication, the effect of HeLa cell single-stranded DNA-binding protein (SSB) on the accuracy of DNA replication by HeLa cell DNA polymerase alpha has been examined. An in vitro gap-filling assay, in which the single-stranded gap contains the supF target gene, was used to measure mutagenesis. Addition of SSB to the in vitro DNA synthesis reaction increased the accuracy of DNA polymerase alpha by 2- to 8-fold. Analysis of the products of DNA synthesis indicated that SSB reduces pausing by the polymerase at specific sites in the single-stranded supF template. Sequence analysis of the types of errors resulting from synthesis in the absence or presence of SSB reveals that, while the errors are primarily base substitutions under both conditions, SSB reduces the number of errors found at 3 hotspots in the supF gene. Thus, a cellular replication factor (SSB) can influence the fidelity of a mammalian DNA polymerase in vitro, suggesting that the high accuracy of cellular DNA replication may be determined in part by the interaction between replication factors, DNA polymerase and the DNA template in the replication complex.  相似文献   

20.
A single, phased nucleosome assembled on a 240 by DNA duplex molecule blocked Escherichia coli RecA protein-promoted strand transfer of the complementary strand of the duplex onto a homologous single-stranded circle. However, when a four-armed cruciform structure was coupled to either end of the duplex the barrier to strand transfer was overcome and joint molecules were efficiently formed. Micrococcal nuclease digestion indicated that the nucleosome was dissociated by the juxtaposition of the cruciform. We interpret these results to mean that cruciform structures can act over a distance to destabilize adjacent nucleosomes and suggest that, as a consequence, the chromatin structure surrounding a crossed strand recombination intermediate might be disrupted, enabling other recombination events to initiate or the process of branch migration to proceed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号