首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in human mitochondrial isoleucine tRNA (hs mt tRNA(Ile)) are associated with cardiomyopathy and opthalmoplegia. A recent study showed that opthalmoplegia-related mutations gave rise to severe decreases in aminoacylation efficiencies and that the defective mutant tRNAs were effective inhibitors of aminoacylation of the wild-type substrate. The results suggested that the effectiveness of the mutations was due in large part to an inherently fragile mitochondrial tRNA structure. Here, we investigate mutant tRNAs associated with cardiomyopathy, and a series of rationally designed second-site substitutions introduced into both opthalmoplegia- and cardiomyopathy-related mutant tRNAs. A source of structural fragility was uncovered. An inherently unstable T-stem appears susceptible to misalignments. This susceptibility sensitizes both domains of the L-shaped tRNA structure to base substitutions that are deleterious. Thus, the fragile T-stem makes the structure of this human mitochondrial tRNA particularly vulnerable to local and distant mutations.  相似文献   

3.
We describe a novel mutation in human mitochondrial NADH dehydrogenase 1 gene (ND1), a G to A transition at nucleotide position 3337, which is co-segregated with two known mutations in tRNALeu(CUN) A12308G and tRNAThr C15946T. These mutations were detected in two unrelated patients with different clinical phenotypes, exhibiting cardiomyopathy as the common symptom. The ND1 G3337A mutation that was detected was found almost homoplasmic in the two patients and it was absent in 150 individuals that were tested as control group. Mitochondrial respiratory chain complex I activity of the patients platelets was also tested and found decreased compared to those of controls. We suggest that the co-existence of mutations in tRNA and ND1 genes may act synergistically affecting the clinical phenotype. Our study highlights the enormous phenotypic diversity that exists among pathogenic mtDNA mutations and re-emphasizes the need for a more careful clinical approach.  相似文献   

4.
5.
Peng QL  Nie LW  Pu YG 《Gene》2006,380(1):14-20
The mitochondrial genome of the Chinese big-headed turtle, Platysternon megacephalum, was obtained using polymerase chain reaction (PCR). The entire mtDNA sequence, the longest mitochondrial genome in turtles reported so far, is 19161 bp. This mitochondrial genome exhibits a novel gene order, which greatly differs from that of any other vertebrates. It is characterized by four distinctive features: 1) the translocation of a gene cluster including three tRNA genes (tRNAHis, tRNASer, tRNALeu(CUN)) and ND5 gene, 2) two tRNAThr pseudogenes, 3) a duplication of pseudo tRNAThr/tRNAPro/D-loop region and 4) 3 non-coding spacers. These unique identities represent a new mitogenomic gene order in vertebrates. The TDRL model was proposed to account for the generation of the gene order in P. megacephalum.  相似文献   

6.
The structure of the human mitochondrial (hs mt) tRNALeu(UUR) features several domains that are predicted to exhibit limited thermodynamic stability. An elevated frequency of disease-related mutations within these domains suggests a link between structural instability and the functional effects of pathogenic mutations. A series of tRNAs featuring mutations within the D and anticodon stems were prepared and investigated using nuclease probing. Structural mapping studies indicated that these domains were partially denatured for the wild type (WT) hs mt tRNALeu(UUR) and were significantly stabilized by mutations introducing additional or stronger base pairs into the stem regions. In addition, trends in the aminoacylation activities of the D stem mutants suggested that the loose structure is required for function, with mutants displaying the most ordered structures exhibiting the lowest levels of aminoacylation activity. A pronounced interdependence of the structures of the anticodon and D stems was observed, with mutations strengthening the D stem stabilizing the anticodon stem and vice versa. The existence of strong interdomain communication was further elucidated with a mutant of hs mt tRNALeu(UUR) containing a stabilized D stem and a pathogenic mutation that disrupted the anticodon stem. Strengthening the structure of the D stem completely restored the function of the disease-related mutant to WT levels, indicating that propagated structural weaknesses contribute to the functional deactivation of this tRNA by mutations.  相似文献   

7.
We have recently identified a point mutation in the mitochondrially encoded tRNA(Leu(UUR)) gene which associates with a combination of type II diabetes mellitus and sensorineural hearing loss in a large pedigree. To extend this finding to other syndromes which exhibit a combination of diabetes mellitus and hearing loss we have sequenced all mitochondrial tRNA genes from two patients with the Wolfram syndrome, a rare congenital disease characterized by diabetes mellitus, deafness, diabetes insipidus and optic atrophy. In each patient, a single different mutation was identified. One is an A to G transition mutation at np 12,308 in tRNA(Leu(CUN)) gene in a region which is highly conserved between species during evolution. This mutation has been described by Lauber et al. (1) as associating with chronic progressive external ophthalmoplegia (CPEO). The other is a C to T transition mutation at np 15,904 in tRNA(Thr) gene. Both mutations are also present in the general population (frequency tRNA(Leu(CUN)) mutation 0.16, tRNA(Thr) mutation 0.015). These findings suggest that evolutionarily conserved regions in mitochondrial tRNA genes can exhibit a significant polymorphism in humans, and that the mutation at np 12,308 in the tRNA(Leu(CUN)) gene is unlikely to be associated with CPEO and Wolfram syndrome.  相似文献   

8.
The irradiation of native or unmodified yeast tRNA(Phe) by short wavelength UV light (260 nM) results in an intramolecular crosslink that has been mapped to occur between C48 in the variable loop and U59 in the T loop. Photo-reversibility of the crosslink and the absence of fluorescent photo adducts suggest that the crosslink product is a cytidine-uridine cyclobutane dimer. This is consistent with the relative geometries of C48 and U59 in the crystal structure of yeast tRNA(Phe). Evaluation of the crosslinking efficiency of the mutants of tRNA(Phe) indicates that the reaction depends on the correct tertiary structure of the RNA.  相似文献   

9.
The binding affinities between Escherichia coli EF-Tu and 34 single and double base-pair changes in the T stem of E. coli tRNA(Thr)(UGU) were compared with similar data obtained previously for several aa-tRNAs binding to Thermus thermophilus EF-Tu. With a single exception, the two proteins bound to mutations in three T-stem base pairs in a quantitatively identical manner. However, tRNA(Thr) differs from other tRNAs by also using its rare A52-C62 pair as a negative specificity determinant. Using a plasmid-based tRNA gene replacement strategy, we show that many of the tRNA(Thr)(UGU) T-stem changes are either unable to support growth of E. coli or are less effective than the wild-type sequence. Since the inviable T-stem sequences are often present in other E. coli tRNAs, it appears that T-stem sequences in each tRNA body have evolved to optimize function in a different way. Although mutations of tRNA(Thr) can substantially increase or decrease its affinity to EF-Tu, the observed affinities do not correlate with the growth phenotype of the mutations in any simple way. This may either reflect the different conditions used in the two assays or indicate that the T-stem mutants affect another step in the translation mechanism.  相似文献   

10.
The U3271C mutation affecting the human mitochondrial transfer RNA(Leu(UUR)) (hs mt tRNA) is correlated with diabetes and mitochondrial encephalopathies. We have explored the relationship between the structural effects of this mutation and its impact on function using chemical probing experiments and in vitro aminoacylation assays to investigate a series of tRNA constructs. Chemical probing experiments indicate that the U3271C substitution, which replaces an AU pair with a CA mispair, significantly destabilizes the anticodon stem. The introduction of a compensatory A3261G mutation reintroduces base pairing at this site and restores the structure of this domain. In fact, the anticodon stem of the A3261G/U3271C mutant appears more structured than wild-type (WT) hs mt tRNA(Leu(UUR)), indicating that the entirely AU stem of the native tRNA is intrinsically weak. The results of the chemical probing experiments are mirrored in the aminoacylation activities of the mutants. The U3271C substitution decreases aminoacylation reactivity relative to the WT tRNA due to an increase in K(m) for the pathogenic mutant. The binding defect is a direct result of the structural disruption caused by the pathogenic mutation, as the introduction of the stabilizing compensatory mutation restores aminoacylation activity. Other examples of functional defects associated with the disruption of weak domains in hs mt tRNAs have been reported, indicating that the effects of pathogenic mutations may be amplified by the fragile structures that are characteristic of this class of tRNAs.  相似文献   

11.
Summary Yeast mitochondria use UUR as the sole leucine codons. CUN, universal leucine codons, are read as threonine by aberrant threonine tRNA with anticodon sequence (UAG).The reassignment of CUN codons to threonine during yeast mitochondrial evolution could have proceeded by the disappearance of CUN codons from the reading frames of messenger RNA, through mutation mainly to UUR leucine codons as a result of AT pressure. We suggest that this was accompanied by a loss of leucine-accepting ability of tRNA Leu(UAG). This tRNA could have then acquired threonine-accepting activity through the appearance of an additional threonyl-tRNA synthetase. CUN codons that subsequently appeared from mutations of various other codons would have been translated as threonine. This change in the yeast mitochondrial genetic code is likely to have evolved through a series of nondisruptive nucleotide substitutions that produced no widespread replacement of leucine by threonine in proteins as a consequence.  相似文献   

12.
 设计并完成了 3种水稻线粒体tRNATrp的突变 ,体外转录并用枯草杆菌和人色氨酰tRNA合成酶 (TrpRS)对tRNATrp及其突变体进行了活力测定 .3种突变体的氨酰化活力比野生型水稻线粒体tRNATrp分别上升了 1 8、1 5和 5倍 .说明A1 U72和G5 C68对于提高线粒体tRNATrp被细胞质TrpRS氨酰化能力的作用并不大 ,细胞质tRNATrp与细胞质TrpRS的识别方式并不适用于线粒体tRNATrp与细胞质TrpRS的相互识别 .研究结果对于了解线粒体tRNATrp和细胞质TrpRS的相互识别及药物设计有重要意义  相似文献   

13.
The mitochondrial tRNA genes are hot spots for mutations that lead to human disease. A single point mutation (T4409C) in the gene for human mitochondrial tRNA(Met) (hmtRNA(Met)) has been found to cause mitochondrial myopathy. This mutation results in the replacement of U8 in hmtRNA(Met) with a C8. The hmtRNA(Met) serves both in translational initiation and elongation in human mitochondria making this tRNA of particular interest in mitochondrial protein synthesis. Here we show that the single 8U-->C mutation leads to a failure of the tRNA to respond conformationally to Mg(2+). This mutation results in a drastic disruption of the structure of the hmtRNA(Met), which significantly reduces its aminoacylation. The small fraction of hmtRNA(Met) that can be aminoacylated is not formylated by the mitochondrial Met-tRNA transformylase preventing its function in initiation, and it is unable to form a stable ternary complex with elongation factor EF-Tu preventing any participation in chain elongation. We have used structural probing and molecular reconstitution experiments to examine the structures formed by the normal and mutated tRNAs. In the presence of Mg(2+), the normal tRNA displays the structural features expected of a tRNA. However, even in the presence of Mg(2+), the mutated tRNA does not form the cloverleaf structure typical of tRNAs. Thus, we believe that this mutation has disrupted a critical Mg(2+)-binding site on the tRNA required for formation of the biologically active structure. This work establishes a foundation for understanding the physiological consequences of the numerous mitochondrial tRNA mutations that result in disease in humans.  相似文献   

14.
We have sequenced all mitochondrial tRNA genes from a patient with chronic progressive external ophthalmoplegia (CPEO) and mitochondrial myopathy, who had no detectable large mtDNA deletions. Direct sequencing failed to detect previously reported mutations and showed a heteroplasmic mutation at nucleotide 12,276 in the tRNA(Leu(CUN)) gene, in the dihydrouridine stem, which is highly conserved through the species during evolution. RFLP analyses confirmed that 18% of muscle mtDNA harbored the mutation, while it was absent from DNA of fibroblasts and lymphocytes of the proband and in 110 patients with other encephalomyopathies. To date, besides large and single nucleotide deletions, several point mutations on mitochondrial tRNA genes have been reported in CPEO patients, but only three were in the gene coding for tRNA(Leu(CUN)).  相似文献   

15.
Editing is a general event in plant mitochondrial messenger RNAs, but has never been detected in a plant mitochondrial transfer RNA (tRNA). We demonstrate here the occurrence of a tRNA editing event in higher plant mitochondria: in both bean and potato, the C encoded at position 4 in the mitochondrial tRNA(Phe)(GAA) gene is converted into a U in the mature tRNA. This nucleotide change corrects the mismatched C4-A69 base-pair which appears when folding the gene sequence into the cloverleaf structure and it is consistent with the fact that C to U transitions constitute the common editing events affecting plant mitochondrial messenger RNAs. The tRNA(Phe)(GAA) gene is located upstream of the single copy tRNA(Pro)(UGG) gene in both the potato and the bean mitochondrial DNAs. The sequences of potato and bean tRNA(Pro)(UGG) genes are colinear with the sequence of the mature bean mitochondrial tRNA(Pro)(UGG), demonstrating that this tRNA is not edited. A single copy tRNA(Ser)(GCU) gene was found upstream of the tRNA(Phe) gene in the potato mitochondrial DNA. A U6-U67 mismatched base-pair appears in the cloverleaf folding of this gene and is maintained in the mature potato mitochondrial tRNA(Ser)(GCU), which argues in favour of the hypothesis that the editing system of plant mitochondria can only perform C to U or occasionally U to C changes.  相似文献   

16.
17.
人的多种遗传疾病与线粒体tRNA基因突变有关,这些突变导致疾病发生的分子机理是当前研究的热点.通过研究线粒体tRNA分子上的碱基修饰情况,人们发现了一类特殊的带有牛磺酸衍生物基团的修饰,这类修饰主要位于线粒体tRNALys和线粒体tRNALeu(UUR)反密码子第一位摆动(wobble)位点的碱基上.最近的研究表明,位于这两种线粒体tRNA基因上的多种突变与遗传性脑肌病相关,包括A8344G,A3243G,T3271C等等,它们可以导致tRNA上相应摆动位点的碱基修饰缺失.无论是在体外培养的带有相应突变的细胞内,还是在来源于脑肌病病人的组织中,科学家都发现了相同的线粒体tRNA碱基修饰缺陷.通过分子手术证实,此类碱基修饰对于维持这两种tRNA的反密码子与mRNA上相应密码子的相互识别至关重要,缺失了这种修饰的tRNA将无法识别一些对应的密码子.通过进一步的实验,人们还鉴定出负责催化此类碱基修饰的酶.这些研究不但揭示了线粒体遗传性脑肌病相关突变的致病机理,也将为研究基因治疗提供可能的新手段.  相似文献   

18.
We investigate the relationships between acylation defects and structure alterations due to base substitutions in yeast mitochondrial (mt) tRNA(UUR)(Leu). The studied substitutions are equivalent to the A3243G and T3250C human pathogenetic tRNA mutations. Our data show that both mutations can produce tRNA(UUR)(Leu) acylation defects, although to a different extent. For mutant A14G (equivalent to MELAS A3243G base substitution), the presence of the tRNA and its defective aminoacylation could be observed only in the nuclear context of W303, a strain where the protein synthesis defects caused by tRNA base substitutions are far less severe than in previously studied strains. For mutant T20C (equivalent to the MM/CPEO human T3250C mutation), the acylation defect was less severe, and a thermosensitive acylation could be detected also in the MCC123 strain. The correlation between the severity of the in vivo phenotypes of yeast tRNA mutants and those obtained in in vitro studies of human tRNA mutants supports the view that yeast is a suitable model to study the cellular and molecular effects of tRNA mutations involved in human pathologies. Furthermore, the yeast model offers the possibility of modulating the severity of yeast respiratory phenotypes by studying the tRNA mutants in different nuclear contexts. The nucleotides at positions 14 and 20 are both highly conserved in yeast and human mt tRNAs; however, the different effect of their mutations can be explained by structure analyses and quantum mechanics calculations that can shed light on the molecular mechanisms responsible for the experimentally determined defects of the mutants.  相似文献   

19.
Amplification and sequencing of mitochondrial DNA regions corresponding to three major clusters of transfer RNA genes from a variety of species representing major groups of birds and reptiles revealed some new variations in tRNA gene organization. First, a gene rearrangement from tRNA(His)-tRNA(Ser)(AGY)-tRNA(Leu)(CUN) to tRNA(Ser)(AGY)- tRNA(His)tRNA(Leu)(CUN) occurs in all three crocodilians examined (alligator, caiman, and crocodile). In addition an exceptionally long spacer region between the genes for NADH dehydrogenase subunit 4 and tRNA(Ser)(AGY) is found in caiman. Second, in congruence with a recent finding by Seutin et al., a characteristic stem-and-loop structure for the putative light-strand replication origin located between tRNA(Asn) and tRNA(Cys) genes is absent for all the birds and crocodilians. This stem-and-loop structure is absent in an additional species, the Texas blind snake, whereas the stem-and-loop structure is present in other snakes, lizards, turtles, mammals, and a frog. The disappearance of the stem-and-loop structure in the blind snake most likely occurred independently of that on the lineage leading to birds and crocodilians. Finally, the blind snake has a novel type of tRNA gene arrangement in which the tRNA(Gln) gene moved from one tRNA cluster to another. Sequence substitution rates for the tRNA genes appeared to be somewhat higher in crocodialians than in birds and mammals. As regards the controversial phylogenetic relationship among the Aves, Crocodilia, and Mammalia, a sister group relationship of birds and crocodilians relative to mammals, as suggested from the common loss of the stem-and- loop structure, was supported with statistical significance by molecular phylogenetic analyses using the tRNA gene sequence data.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号