共查询到20条相似文献,搜索用时 0 毫秒
1.
Chinthapalli Bhaskarrao Raghavan Chitra Bläsing O. Westhoff P. Raghavendra A.S. 《Photosynthetica》2000,38(3):415-419
Photosynthetica - Phosphoenolpyruvate carboxylase (PEPC) was purified from leaves of four species of Alternanthera differing in their photosynthetic carbon metabolism: Alternanthera sessilis (C3),... 相似文献
2.
Salahas G. Angelopoulos K. Zervoudakis G. Georgiou C. D. 《Russian Journal of Plant Physiology》2001,48(2):176-180
When Tris–SO4was used as an extraction buffer for phosphoenolpyruvate carboxylase (PEPC) from leaves of the C4plant Cynodon dactylon(L.) Pers., a higher extractable activity was obtained as compared to Tris–HCl, especially at low phosphoenolpyruvate concentrations and an assay pH of 7.2. The Tris–SO4-extracted PEPC activity was stable under dilution and remained unchanged for at least 24 h at 22°C. This enzyme was less sensitive to both activation by glucose-6-phosphate and inhibition by L-malate. The effects of Tris–SO4could be attributed to its preferential exclusion from the enzymic protein domain and, therefore, to a shifting of this oligomeric enzyme to a more aggregable form that is more stable and active. 相似文献
3.
Feeding K+ or Na+ nitrate salts in vivo enhanced the activity of phosphoenolpyruvate carboxylase (PEPC) in the leaf extracts of Alternanthera pungens (C4 plant) and A. sessilis (C3 species). The increase was more pronounced in A. pungens than in A. sessilis. Chloride salts increased the PEPC activity only marginally. However, the sulfate salts were either not effective or inhibitory. Feeding nitrate modulated the regulatory properties of PEPC in A. pungens, resulting in increased KI (malate) and decreased KA (glucose-6-P). The sensitivity of PEPC to malate, which gives a measure of phosphorylation status of the enzyme, indicated that feeding leaves with NO3
– enhanced the phosphorylation status of the enzyme. The reduction in PEPC activity due to cycloheximide treatment suggested that increased synthesis of PEPC protein kinase may be one of the reasons for the enhancement in PEPC activity, after the nitrate feeding. We suggest that nitrate salts could be used as a tool to modulate and analyze the properties of PEPC in C3 and C4 plants. 相似文献
4.
G. Salahas K. Hatzidimitrakis C. D. Georgiou K. Angelopoulos N. A. Gavalas 《Plant biology (Stuttgart, Germany)》1997,110(4):309-313
The effect of phosphate, sulfate and other inorganic ions on the activity of phosphoenolpyruvate carboxylase (PEPC) from the C4 plant Cynodon dactylon were investigated for the first time, as well as their interaction with Clc-6-P, AMP and ma-late. Activation of PEPC by phosphate and sulfate ions was demonstrated and it was not dependent on the accompanying cations, something that was not clarified for PEPCs from other plant sources. No activation of this enzyme was observed by nitrate. PEPC activation was found to be competitive with glucoses-phosphate (Clc-6-P) and AMP stimulation and less sensitive to malate inhibition. This work showed that PEPC from C4plants could exhibit similar activation properties with the enzyme from CAM plants and different activation properties in plants of the same type, rendering the study of this enzyme from different plant sources necessary. 相似文献
5.
The kinetic properties of phosphoenolpyruvate (PEP) carboxylasehave been studied among several Flaveria species: the C3 speciesF. cronquistii, the C3C4 species F. pubescens and F.linearis, and the C4 species F. trinervia. At either pH 7 or8, the maximum activities (in µmol.mg Chl1.h1)for F. pubescens and linearis (187513) were intermediateto those of the C3 species (1219) and the C4 species(2,1822,627). The response curves of velocity versusPEP concentration were hyperbolic for the C3 and C3C4species at either pH 7 or 8 while they were sigmoidal for theC4 species at pH 7 and hyperbolic at pH 8. The Km values forPEP determined from reciprocal plots were lowest in the C3 species,and of intermediate value in the C3C4 species comparedto the K' values of the C4 species determined from Hill plotsat either pH 7 or 8. Glucose-6-phosphate (G6P) decreased theKm values for PEP at both pH 7 and 8 in the C3 and C3C4species. In the C4 species, G6P decreased the K' values at pH8 but increased the K' values at pH 7. In all cases, G6P hadits effect by influencing the activity at limiting PEP concentrationswith little or no effect on the maximum activity. At pH 8 andlimiting concentrations of PEP the degree of stimulation ofthe activity by G6P was greatest in the C4 species, intermediatein F. linearis, a C3C4 species, and lowest in the C3species. In several respects, the PEP carboxylases of the C3C4Flaveria species have properties intermediate to those of theC3 and C4 species. (Received April 30, 1983; Accepted August 22, 1983) 相似文献
6.
A traditional method is reported for purification of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) from leaves of Amaranthus hypochondriacus L. with a high yield of 50 %, 135-fold purification, and specific activity of 900 mmol kg–1(protein) s–1. PEPC was purified from light-adapted leaves of A. hypochondriacus, involving 40–60 % ammonium sulphate fractionation, followed by chromatography on columns of DEAE-Sepharose, hydroxylapatite (HAP), and Seralose 6-B. The enzyme appeared as a single band on 10 % SDS-PAGE, with a molecular mass of about 100 kDa. Kinetic studies with purified enzyme confirmed the PEPC to be the light-form of the enzyme. Glycerol generally increased the stability of PEPC. The stability and storage of the purified enzyme was studied at temperatures of 4 °C, –20 °C, and liquid nitrogen. PEPC maintained its activity for up to 3 months upon storage with 50 % (v/v) glycerol in liquid nitrogen. 相似文献
7.
The in vitro effect of sodium chloride on the enzyme activity of four halophytes, Beta vulgaris ssp. maritima (L.) Thell., Halimione portulacoides (L.) Aell., Salicornia ramosissima Woods and Suaeda maritima (L.) Dum. was investigated. The activity was, in general, affected by sodium chloride in a similar manner to that reported for salt sensitive species. The most notable exceptions were the sodium chloride stimulated ATPases of Beta and Salicornia. 相似文献
8.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP
phosphoenolpyruvate
- PGA
3-phosphoglycerate
- RuBP
ribulose-1,5-bisphosphate 相似文献
9.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities. 相似文献
10.
Artificial hybridization studies have been carried out between plants with different photosynthetic types to study the genetic mechanism of photosynthetic types. However, there are only few reports describing the possibility of natural hybridization between plants with different photosynthetic types. A previous cytological and morphological study suggested that a cruciferous allotetraploid species, Diplotaxis muralis (L.) DC. (2n = 42), originated from natural hybridization between D. tenuifolia (L.) DC. (2n = 22) and D. viminea (L.) DC. (2n = 20). These putative parents have recently been reported to be a C (3)-C (4) intermediate and a C (3) species, respectively. If this hybridization occurred, D. muralis should have characteristics intermediate between those of the C (3)-C (4) intermediate and C (3) types. We compared leaf structures and photosynthetic characteristics of the three species. The bundle sheath (BS) cells in D. tenuifolia included many centripetally located chloroplasts and mitochondria, but those of D. viminea had only a few organelles. The BS cells in D. muralis displayed intermediate features between the putative parents. Glycine decarboxylase P protein was confined to the BS mitochondria in D. tenuifolia, but accumulated mainly in the mesophyll mitochondria in D. viminea. In D. muralis, it accumulated in both the BS and the mesophyll mitochondria. Values of CO (2) compensation point and its response to changing light intensity were also intermediate between the putative parents. These data support the theory that D. muralis was created by natural hybridization between species with different photosynthetic types. 相似文献
11.
In order to study photosynthetic characteristics, phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activities as well as soluble protein and chlorophyll contents were determined in leaf and fruit pericarp samples from diverse coffee genotypes (Coffea arabica cv. Colombia, Caturra, Caturra Erecta, San Pacho, Tipica, C. stenophylla, C. eugenioides, C. congensis, C. canephora, C. canephora cv. Arabusta, C. arabica cv. Caturra×C. canephora and Hibrido de Timor. We found a slightly higher PEPC activity in fruit pericarp than in leaves, while RuBPCO activity was much lower in pericarp than leaf tissue. Partial purification of PEPC and RuBPCO was carried out from leaves of C. arabica cv. Caturra and Michaelis-Menten kinetics for RuBPCO (Km CO2 = 5.34 µM), (Km RuBP = 9.09 µM) and PEPC (Km PEP = 19.5 µM) were determined. Leaf tissues of Colombia, Hibrido de Timor, and Caturra consistently showed higher content of protein [55.4–64.4 g kg–1 (f.m.)] than San Pacho, C. stenophylla, Tipica, Caturra Erecta, and Caturra×C. canephora [25.6–36.9 g kg–1 (f.m.)] and C. canephora cv. Arabusta, Borbon, C. congensis, C. eugenioides, and C. canephora [16.1–21.1 g kg–1 (f.m.)]. 相似文献
12.
Isolated mesophyll cells from darkened leaves of the C(4) plant Digitaria sanguinalis keep functional plasmodesmata that allow the free exchange of low molecular mass compounds with the surrounding medium. This cell suspension system has been used to measure C(4) PEPC activity in situ using a spectrophotometric assay. Compared to the extracted enzyme assayed in vitro, the essentially non-phosphorylated 'in-cell' C(4) PEPC showed altered functional and regulatory properties. While the S (0.5) for PEP at pH 7.3 was only modestly changed (0.4-0.6 mM), the response to pH was shifted towards the acidic range, being close to the maximal value at pH 7.3. Using expected physiological concentrations of the metabolites, at pH 7.3, the IC(50) for malate showed a five-fold increase, from 1.5 to 8 mM, and was increased further to 22 mM in the presence of the allosteric activator glucose-6-phosphate (4 mM). Thiol compounds like DTT, mercaptoethanol and reduced glutathione weakened the in-situ sensitivity of C(4) PEPC to malate. However, none of them had any effect on this process in vitro. This was not due to thioredoxin-mediated or phoshorylation-dependent processes. Since glutathione is a physiological compound that is present mostly in the reduced state in the cell cytosol, a possible contribution of this thiol to the protection of the enzyme against malate in situ is proposed. 相似文献
13.
The extraction of phosphoenolpyruvate carboxylase, PEPC (EC 4.1.1.31) from leaves of Cynodon dactylon (L.) Pers. with phosphate buffer (pH 7.4, 105 mM) was advantageous in comparison to the usual extraction with Tris-HCl buffer
(pH 7.4, 100 mM); a higher activity was obtained, which was most evident at low substrate (phosphoenolpyruvate) concentrations.
The PEPC activity was stable under dilution or in storage for at least 48 h at room temperature. The effects of phosphate
buffer were not due to inhibition of phosphatase(s) action during the extraction, since they were also observed when the phosphates
were added after the extraction with Tris-HCl. The phosphate-extracted enzyme was less responsive to both L-malate inhibition
and activation by glucose-6-phosphate. The effects of phosphates might be due to preferential exclusion from the enzymic protein
domain and, therefore, to a confinement of the enzyme to a fraction of the total volume.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
14.
Phosphoenolpyruvate carboxylase (PEPC) and pyruvate orthophosphate dikinase (PPDK) cold inactivation was studied in leaf extracts from Atriplex halimus L. Both enzyme activities gradually reduced as the temperature and the total soluble protein decreased. Mg2+ at a concentration of 10 mM stabilized PEPC and PPDK activities against cold inactivation. At low Mg2+ concentration (4 mM), PEPC was strongly protected by phosphoenolpyruvate, glucose-6-phosphate, and, partially, byL-malate, while PPDK was protected by PEP, but not by its substrate, pyruvate. High concentrations of compatible solutes (glycerol, betaine, proline, sorbitol and trehalose) proved to be good protectants for both enzyme activities against cold inactivation. When illuminated leaves were exposed to low temperature, PPDK was partially inactivated, while the activity of PEPC was not altered. 相似文献
15.
The kinetic properties of ribulose 1,5-bisphosphate carboxylase(RuBPC) appear to have been modified during evolution of photosynthesisto adjust to changes in substrate availability. C4 plants areconsidered to have a higher concentration of CO2 available toRuBPC than C3plants. In this study, the Km(CO2 and catalyticcapacity (kcat) of RuBPC and the ratio of RuBPC protein to totalsoluble protein from several Flaveria species, including C3,C3-C4 intermediate, and C4 species, were determined. The C3and intermediate species had similar Km(CO2) values while theC4 species on average had higher Km(CO2) values. The mean ratioof Kcat/Km for species of each group was similar, supportingthe hypothesis that changes in Km and Kcat, are linked. Theallocation of total soluble protein to RuBPC was lowest in theC4 Flaveria species, intermediate in the C3-C4 species, andhighest in the C3 species. The results suggest that during evolutionof C4 photosynthesis adjustments may occur in the quantity ofRuBPC prior to changes in its kinetic properties. (Received January 4, 1989; Accepted April 11, 1989) 相似文献
16.
C. M. O'Neill T. Murata C. L. Morgan R. J. Mathias 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(8):1234-1241
The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, Ariana, Cobra and Westar. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids. 相似文献
17.
The catalytic and regulatory properties of phosphoenolpyruvate(PEP) carboxylase (PEPC) are modulated remarkably by the increasein the level of bicarbonate in the assay medium. The activityof PEPC increased by two-fold as the concentration of bicarbonatewas raised from 0.05 to 10 mM. During this state, there wasonly marginal effect on Km for PEP, while the affinity of PEPCto Mg2+ increased by >2 fold. In contrast, the sensitivityof PEPC to malate decreased with increasing concentration ofHCO3. Similarly, the stimulation by glucose 6-phosphate(G-6-P) at optimal concentration (10 mM) of HCO3 wasmuch less than that at suboptimal concentration (0.05 mM). K1for malate increased by about 3 fold and Ka for G-6-P risedby fourfold as bicarbonate concentration was rised from 0.05to 10 mM. These results suggest that HCO3 desensitizesPEPC to both malate and G-6-P. Further, these changes were manifestedin both dark- as well as light-forms of the enzyme. Similarresults were obtained with PEPC in leaf extracts or in purifiedform. We therefore propose that bicarbonate-induced changesare independent of phospho-rylation and possibly through a significantchange in the conformation of the enzyme. This is the firstdetailed report indicating marked modulation of regulatory andcatalytic properties of PEPC by bicarbonate, one of its substrate. (Received April 14, 1998; Accepted September 22, 1998) 相似文献
18.
Gayathri J Parvathi K Chinthapalli B Westhoff P Raghavendra AS 《Indian journal of experimental biology》2001,39(7):643-649
Immunological cross-reactivity of phosphoenolpyruvate carboxylase (PEPC) in leaf extracts of C3-, C4- and C3-C4 intermediate species of Alternanthera (along with a few other C3- and C4- plants) was studied using anti-PEPC antibodies raised against PEPC of Amaranthus hypochondriacus (belonging to the same family as that of Alternanthera, namely Amaranthaceae). Antibodies were also raised in rabbits against the purified PEPC from Zea mays (C4- monocot-Poaceae) as well as Alternanthera pungens (C4- dicot-Amaranthaceae). Monospecificity of PEPC-antiserum was confirmed by immunoprecipitation. Amount of PEPC protein in leaf extracts of A. hypochondriacus could be quantified by single radial immunodiffusion. Cros- reactivity of PEPC in leaf extracts from selected C3-, C4-, and C3-C4 intermediate species (including those of Alternanthera) was examined using Ouchterlony double diffusion and Western blots. Anti-PEPC antiserum raised against A. hypochondriacus enzyme showed high cross-reactivity with PEPC in leaf extracts of A. hypochondriacus or Amaranthus viridis or Alternanthera pungens (all C4 dicots), but limited cross-reactivity with that of Zea mays, Sorghum or Pennisetum (all C4 monocots). Interestingly, PEPC in leaf extracts of Alternanthera tenella, A. ficoides, Parthenium hysterophorus (C3-C4 intermediates) exhibited stronger cross-reactivity (with anti-serum raised against PEPC from Amaranthus hypochondriacus) than that of Pisum sativum, Commelina benghalensis, Altenanthera sessilis (C3 plants). Further studies on cross-reactivities of PEPC in leaf extracts of these plants with anti-PEPC antisera raised against PEPC from leaves of Zea mays or Alternanthera pungens confirmed two points--(i) PEPC of C3-C4 intermediate is distinct from C3 species and intermediate between those of C3- and C4-species; and (ii) PEPC of C4-dicots was closer to that of C3-species or C3-C4 intermediates (dicots) than to that of C4-monocots. 相似文献
19.
C4 isoform of NADP-malate dehydrogenase. cDNA cloning and expression in leaves of C4, C3, and C3-C4 intermediate species of Flaveria. 下载免费PDF全文
In C4 plants of the NADP-malic enzyme type, an abundant, mesophyll cell-localized NADP-malate dehydrogenase (MDH) acts to convert oxaloacetate, the initial product of carbon fixation, to malate before it is shuttled to the bundle sheath. Since NADP-MDH has different but important roles in leaves of C3 and C4 plants, we have cloned and characterized a nearly full-length cDNA encoding NADP-MDH from Flaveria trinervia (C4) to permit comparative structure/expression studies within the genus flaveria. The dicot genus Flaveria includes C3-C4 intermediate species, as well as C3 and C4 species. We show that the previously noted differences in NADP-MDH activity levels among C3, C4, and C3-C4 Flaveria species are in part due to interspecific differences in mRNA accumulation. We also show that the NADP-MDH gene appears to be present as a single copy among different Flaveria species, suggesting that a pre-existing gene has been reregulated during the evolution from C3 to C4 plants to accommodate the abundance and localization requirements of the C4 cycle. 相似文献
20.
Novel characteristics of cassava,Manihot esculenta Crantz,a reputed C3-C4 intermediate photosynthesis species 总被引:1,自引:0,他引:1
Mitko N. Angelov Jindong Sun George T. Byrd R. Harold Brown Clanton C. Black 《Photosynthesis research》1993,38(1):61-72
The cassava plant, Manihot esculenta, grows exceptionally well in low fertility and drought prone environments, but the mechanisms that allow this growth are unknown. Earlier, and sometimes contradictory, work speculated about the presence of a C4-type photosynthesis in cassava leaves. In the present work we found no evidence for a C4 metabolism in mature attached cassava leaves as indicated i) by the low, 2 to 8%, incorporation of 14CO2 into C4 organic acids in short time periods, 10 s, and the lack of 14C transfer from C4 acids to other compounds in 12CO2, ii) by the lack of C4 enzyme activity changes during leaf development and the inability to detect C4 acid decarboxylases, and iii) by leaf CO2 compensation values between 49 and 65 l of CO2 1–1 and by other infrared gas exchange photosynthetic measurements. It is concluded that the leaf biochemistry of cassava follows the C3 pathway of photosynthesis with no indication of a C3-C4 mechanism.However, cassava leaves exhibit several novel characteristics. Attached leaves have the ability to effectively partition carbon into sucrose with nearly 45% of the label in sucrose in about one min of 14CO2 photosynthesis, contrasting with 34% in soybean (C3) and 25% in pigweed (C4). Cassava leaves displayed a strong preference for the synthesis of sucrose versus starch. Field grown cassava leaves exhibited high rates of photosynthesis and curvilinear responses to increasing sunlight irradiances with a tendency to saturate only at high irradiances, above 1500 mol m–2 s–1. Morphologically, the cassava leaf has papillose epidermal cells on its lower mesophyll surface that form fence-like arrangements encircling guard cells. It is proposed that the active synthesis of sugars has osmotic functions in the cassava plant and that the papillose epidermal cells function to maintain a healthy leaf water status in various environments.Abbreviations ADP
adenosine diphosphate
- Asp
aspartate
- BSA
bovine serum albumin
- CoA
coenzyme A
- DTT
dithiothreitol
- EDTA
ethylenediaminetetraacetic acid
- FBP
fructose-1,6-biphosphate
- Gly
glycine
- HEPES
N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid
- Mal
malate
- NAD
nicotinamide adenine dinucleotide (oxidized form)
- NADH
nicotinamide adenine dinucleotide (reduced form)
- NADP
nicotinamide adenine dinucleotide phosphate (oxidized form)
- PAR
photosynthetic active radiation (400–700 nm)
- PEP
phosphenolpyruvate carboxylase
- p-FBPase
plastid fructose-1,6-biphosphatase
- PGA
3-phosphoglyceric acid
- PMSF
phenylmethylsulfonyl fluoride
- PVP
polyvinylpyrrolidone
- Rubisco
ribulose-1,5-biphosphate carboxylase/oxygenase
- RuBP
ribulose-1,5-biphosphate
- Ser
serine
- sugar-P
sugar-phosphates 相似文献