首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compartments of the Paramecium digestive system were investigated with wheat germ agglutinin (WGA). By use of cryosectioning or Lowicryl K4M embedding combined with pulse-chase studies and WGA-gold labeling, WGA binding sites were located on membranes of the phagosome-lysosome system, including all four stages of digestive vacuoles, the discoidal vesicles, acidosomes, and lysosomes. In addition, the contents of lysosomes, cisternae at the trans face of Golgi stacks, and coated and uncoated blebs and vesicles at the putative trans Golgi network bind to WGA. Crystal-containing vacuoles characteristic of mid-log to stationary-phase cultures are enclosed by heavily labeled membranes. Alveoli underlying the plasma membrane sometimes contain binding sites, particularly on their outer membranes. Ciliary membranes previously shown to be labeled with WGA-FITC are negative in frozen thin and Lowicryl K4M sections. The presence of WGA binding sites on the trans face of the Golgi stack is the first indication in ciliated protozoa, such as Paramecium, of probable Golgi complex involvement in glycosylation similar to that in higher organisms. WGA-labeled coated vesicles in the endoplasm apparently lose their coats and coalesce to form lysosomes. Our study shows that WGA can be used as a specific intracellular marker of all digestive system membranes and of lysosomal content. These results support and extend our published scheme of membrane flow and recycling in Paramecium by providing another means of demonstrating membrane relationships.  相似文献   

2.
Thin sections of Lowicryl K4M-embedded materials were labeled with protein A-gold complex. Gold particles representing the antigen sites for cathepsin B were exclusively confined to lysosomes of each segment of the nephron. The heaviest labeling was noted in the lysosomes of the S1 segment of the proximal tubules. Labeling intensity varied considerably with the individual lysosomes. Lysosomes of the other tubular segments, such as the S2 and S3 segments of the proximal tubules, distal convoluted tubules, and collecting tubules were weakly labeled by gold particles. Quantitative analysis of labeling density also confirmed that lysosomes in the S1 segment have the highest labeling density and that approximately 65% of labeling in the whole renal segments, except for the glomerulus, was found in the S1 segment. These results indicate that in rat kidney the lysosomes of the S1 segment are a main location of cathepsin B. Further precise observations on lysosomes of the S1 segment revealed that apical vesicles, tubules, and vacuoles were devoid of gold particles, but when the vacuoles contained fine fibrillar materials, gold labeling was detectable in such vacuoles. As the lysosomal matrix becomes denser, the labeling density is increased. Some small vesicles around the Golgi complex were also labeled. These results indicate that the endocytotic apparatus including the apical vesicles, tubules, and vacuoles contains no cathepsin B. When the vacuoles develop into phagosomes, they acquire this enzyme to digest the absorbed proteins.  相似文献   

3.
Localization of acid phosphatase (ACPase) in rat liver was investigated by immunocytochemical techniques. Rat liver was fixed by perfusion and cut into thick tissue slices, which were embedded in Epon or Lowicryl K4M. For light microscopy (LM), semithin Epon sections were stained for the enzyme ACPase by an indirect immunoenzyme technique. For electron microscopy (EM), ultra-thin Lowicryl K4M sections were stained by a protein A-gold technique. By means of LM, granular reaction deposits were observed in hepatocytes and sinus-lining cells. Stained granules were present in the juxtanuclear cytoplasm, but they did not correspond to a typical staining pattern for the Golgi complex. EM revealed that gold particles indicating ACPase antigens were present on lysosomes and on some vesicles locating in the trans Golgi region. Endosomelike vesicles were strongly positive for the labeling. Golgi cisterna were mostly negative, but weak signals were noted in dilated sacules. The plasma membranes on the sinusoidal and bile canalicular sides were labeled by a few gold particles. The results indicate that ACPase is present in endosomes and in a restricted area of plasma membrane, as well as in the lysosomal system.  相似文献   

4.
Little is known about the fate of lysosomal membrane in phagocytic cells. Because the age of the digestive vacuoles in Paramecium caudatum can be easily determined, we have been able to study the dynamic membrane events in the older vacuoles. Late in the phagolysosomal stage (DV-III) the vacuole membrane undergoes a burst of tubule formation. The tubules expand into vesicles which have characteristics resembling lysosomes in both thin sections and freeze-fracture replicas. The tubules also contain acid phosphatase activity when they arise from acid phosphatase-reactive vacuoles. We conclude that after active digestion lysosomal membrane is retrieved in whole or in part along with some membrane-associated hydrolases. A logical extension of these results is that the lysosome-like vesicles, after being recharged with hydrolases by fusing with primary lysosomes, are recycled back to DV-II for reuse.  相似文献   

5.
Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternae of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

6.
Summary Binding sites for wheat germ agglutinin (WGA), Dolichos biflorus agglutinin (DBA), Ricinus communis I agglutinin (RCA I) and Limax flavus agglutinin (LFA) have been ultrastructurally detected in rat epiphyseal chondrocytes by a post-embedding cytochemical technique using colloidal gold as marker. The four lectins labelled exclusively the Golgi apparatus of chondrocytes embedded in Lowicryl K4M resin by two different methods. WGA binding sites were localized in medial and trans cisternae as well as in immature secretory vesicles, whereas those for DBA were seen concentrated in cis and medial cisternae. Labelling with both RCA I and LFA lectins was distributed throughout all the cisternac of the Golgi stack, and the latter also in vesicles and tubules at the trans face. Neuraminidase pretreatment of the sections abolished LFA staining, decreased reaction with WGA and increased that with RCA I, while it did not affect DBA staining. After chondroitinase ABC treatment only the RCA I reaction was modified, revealing new binding sites in the trans Golgi face, secretory granules and extracellular matrix. These results indicate that the distribution of subcompartments in the Golgi apparatus of chondrocytes is different from that in cells secreting glycoproteins as major products.  相似文献   

7.
Lectins and neoglycoproteins labeled with colloidal gold particles were used for the ultrastructural localization of carbohydrate residues and sugar-binding sites, respectively, in thin sections of tachyzoites of Toxoplasma gondii embedded in the Lowicryl K4M resin. Incubation of the sections in the presence of gold-labeled Canavalia ensiformis (Con A), Arachis hypogaea (PNA), Ricinus communis I (RCA I), Triticum vulgaris (WGA), and Limax flavus (LFA) agglutinins showed significant labeling of the rhoptries. However, no labeling of the parasite's surface was observed. Incubation of tachyzoites in the presence of gold-labeled albumin-N-acetyl-D-glucosamine or albumin-galactose, but not in the presence of albumin-mannose, led to labeling of the rhoptries in a pattern similar to that observed with the lectins. The results obtained are discussed in relation to the possible role played by secretion of rhoptry macromolecules during the process of T. gondii-host cell interaction.  相似文献   

8.
ABSTRACT. The temporal changes in the size and pH of digestive vacuoles (DV) in Paramecium caudatum were reevaluated. Cells were pulsed briefly with polystyrene latex spheres or heat-killed yeast stained with three sulfonphthalein indicator dyes. Within 5 min of formation the intravacuolar pH declined from ~7 to 3. With the exception of a transient and early increase in vacuolar size, vacuole condensation occurred rapidly and paralleled the acidification so that vacuoles reached their lowest pH and minimal size simultaneously. Neutralization and expansion of vacuole size began when vacuoles were GT8 min old. No labeled vacuoles were defecated prior to 21 min after formation but almost all DV were defecated within 1 h so that the digestive cycle of individual vacuoles ranged from 21 to 60 min. Based on these size and pH changes, the presence of acid phosphatase activity, and membrane morphology, digestive vacuoles can be grouped into four stages of digestion. The DV-I are GT6 min old and undergo rapid condensation and acidification. The DV-II are between 4 to 10 min old and are the most condensed and acidic vacuoles. The DV-III range in age from 8 to ~20 min and include the expanding or expanded vacuoles that result from lysosomes fusing with DV-II. The DV-IV are GD21 min old, and since digestion is presumably completed, they can be defecated. The rise in intravacuolar pH that accompanies vacuole expansion suggests that lysosomes play a role in vacuole neutralization in addition to their degradative functions. The acidification and condensation processes in DV-I appear to be unrelated to lysosomal function, as no acid phosphaiase activity has been detected at this stage, but may be related to phagosomal functions important in killing food organisms, denaturing proteins prior to digestion, and preparing vacuole membrane for fusion with lysosomes.  相似文献   

9.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

10.
Immunocytochemical localization of cathepsins B and H in rat liver   总被引:1,自引:0,他引:1  
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

11.
S Yokota  K Kato 《Histochemistry》1987,88(1):97-103
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

12.
In ciliated protozoa, most nutrients are internalized via phagocytosis by food vacuole formation at the posterior end of the buccal cavity. The uptake of small-sized molecules and external fluid through the plasma membrane is a localized process. That is because most of the cell surface is internally covered by an alveolar system and a fibrous epiplasm, so that only defined areas of the cell surface are potential substance uptake sites. The purpose of this study is to analyze, by fluorescence confocal laser scanning microscopy, the relationship between WGA (Triticum vulgaris agglutinin) and dextran internalization in Paramecium primaurelia cells blocked in the phagocytic process, so that markers could not be internalized via food vacuole formation. WGA, which binds to surface constituents of fixed and living cells, was used as a marker for membrane transport and dextran as a marker for fluid phase endocytosis. After 3 min incubation, WGA-FITC is found on plasma membrane and cilia, and successively within small cytoplasmic vesicles. After a 10-15 min chase in unlabeled medium, the marked vesicles decrease in number, increase in size and fuse with food vacuoles. This fusion was evidenced by labeling food vacuoles with BSA-Texas red. Dextran enters the cell via endocytic vesicles which first localize in the cortical region, under the plasma membrane, and then migrate in the cytoplasm and fuse with other endocytic vesicles and food vacuoles. When cells are fed with WGA-FITC and dextran-Texas red at the same time, two differently labeled vesicle populations are found. Cytosol acidification and incubation in sucrose medium or in chlorpromazine showed that WGA is internalized via clathrin vesicles, whereas fluid phase endocytosis is a clathrin-independent process.  相似文献   

13.
To examine localization of cathepsin B, a representative lysosomal cysteine protease, in atrial myoendocrine cells of the rat heart, immunohistochemistry at the light and electron microscopic level was applied to the atrial tissue, using a monospecific antibody for rat liver cathepsin B. In serial semi-thin sections, immunoreactivity for cathepsin B and atrial natriuretic peptides (ANP) was detected in the para-nuclear region of atrial myoendocrine cells. Several large granules and many fine granules in the region of the cells were positively stained by the cathepsin B antibody. Gold particles indicating cathepsin B antigenicity labeled secretory granules in the cells, which were also labeled by those indicating ANP, using thin sections of the Lowicryl K4M-embedded material. Moreover, some granules labeled densely by immunogold particles for cathepsin B seemed to be lysosomes. By double immunostaining using thin sections of the Epon-embedded material, gold particles indicating cathepsin B and ANP antigenicities were co-localized in secretory granules of the cells. By enzyme assay, activity of cathepsin B was three times higher in atrial tissue than ventricular tissue. The results suggest that co-localization of cathepsin B and ANP in secretory granules is compatible with the possibility that cathepsin B participates in the maturation process of ANP.  相似文献   

14.
Though all three lectins tested (ConA, RCA II, WGA) bound to the entire cell membrane, none bound selectively to the docking site of secretory organelles (trichocysts); the same results were achieved with FITC-conjugates, or, on the EM level, with peroxidase- or gold-labeling. Only WGA triggered the release of trichocysts and none of the lectins tested inhibited AED-induced synchronous exocytosis. When exocytosis was triggered synchronously in the presence of any of these three lectins (FITC-conjugates), the resulting ghosts trapped the FITC-lectins and the cell surface was immediately afterwards studded with regularly spaced dots (corresponding to the ghosts located on the regularly spaced exocytosis sites). These disappeared within about 10 min from the cell surface (thus reflecting ghost internalization with a half life of 3 min) and fluorescent label was then found in approximately 6-10 vacuoles, which are several microns in diameter, stain for acid phosphatase and, on the EM level, contain numerous membrane fragments (otherwise not found in this form in digesting vacuoles). We conclude that synchronous massive exocytosis involves lysosomal breakdown rather than reutilization of internalized trichocyst membranes and that these contain lectin binding sites (given the fact free fluorescent probes did not efficiently stain ghosts). Trichocyst contents were analyzed for their lectin binding capacity in situ and on polyacrylamide gels. RCA II yielded intense staining (particularly of "tips"), while ConA (fluorescence concentrated over "bodies") and WGA yielded less staining of trichocyst contents on the light and electron microscopic level. Only ConA- and WGA-staining was inhibitable by an excess of specific sugars, while RCA II binding was not. ConA binding was also confirmed on polyacrylamide gels which also allowed us to assess the rather low degree of glycosylation (approximately 1% by comparison with known glycoprotein standards) of the main trichocyst proteins contained in their expandable "matrix". Since RCA II binding could be due to its own glycosylation residues we looked for an endogenous lectin. The conjecture was substantiated by the binding of FITC-lactose-albumin (inhibitable by a mixture of glucose-galactose). This preliminary new finding may be important for the elucidation of trichocyst function.  相似文献   

15.
S Yokota  K Kato 《Histochemistry》1988,89(5):499-504
The heterogeneity of lysosomes was studied by analyzing the immunostaining behavior of cathepsins B and H in rat kidney proximal tubule cells. Rat kidneys were fixed by perfusion and embedded in Lowicryl K4M. A protein A-gold technique was applied to serial sections and a double labeling technique to conventional sections. By analyzing the immunostaining behavior of cathepsins B and H in the same lysosomes which were cut into separate sections, four types of lysosomes were found: Type 1 positive for both proteinases; type 2 strongly positive for cathepsin B, but weakly or negative for cathepsin H; type 3 strongly positive for cathepsin H, but weakly or negative for cathepsin B; and type 4 negative for both proteinases. The double labeling by two different sizes of the protein A-gold probes showed these four types of lysosomes. The results indicate that there exists the lysosomal heterogeneity of the proteinase content in the kidney proximal tubule cells.  相似文献   

16.
Summary The heterogeneity of lysosomes was studied by analyzing the immunostaining behavior of cathepsins B and H in rat kidney proximal tubule cells. Rat kidneys were fixed by perfusion and embedded in Lowicryl K4M. A protein A-gold technique was applied to serial sections and a double labeling technique to conventional sections. By analyzing the immunostaining behavior of cathepsins B and H in the same lysosomes which were cut into separate sections, four types of lysosomes were found: Type 1 positive for both proteinases; type 2 strongly positive for cathepsin B, but weakly or negative for cathepsin H; type 3 strongly positive for cathepsin H, but weakly or negative for cathepsin B; and type 4 negative for both proteinases. The double labeling by two different sizes of the protein A-gold probes showed these four types of lysosomes. The results indicate that there exists the lysosomal heterogeneity of the proteinase content in the kidney proximal tubule cells.  相似文献   

17.
Phagosome fusion vesicles of paramecium. I. Thin-section morphology   总被引:2,自引:0,他引:2  
Ultrastructural studies of the digestive system of Paramecium caudatum focusing on the first 5 min of digestive-vacuole age reveal a set of vesicles, named phagosome fusion vesicles (PFVs), which fuse with the digestive vacuole just after the vacuoles are released from the cytopharynx and concomitant with vacuole acidification. Serial thin-sections of vacuoles labeled with horseradish peroxidase (HRP) and/or latex beads in pulse-chase studies were observed. PFVs, irregularly shaped, electron-translucent vesicles ranging from a small diameter to over 1 micro, are first seen in the region of the cytopharynx where they bind to the nascent vacuole membrane. Within 30 sec of vacuole release the PFVs fuse with the vacuole where they remain for a brief time connected to the vacuole by a narrow annulus. HRP-reaction product is found in vacuoles but not in PFVs before PFVs fuse with the vacuoles. After fusion with PFVs HRP is quickly inactivated. Tubular extensions of vacuole membrane then form between the fused PFVs. By 3 to 5 min both PFVs and tubules disappear from the vacuole surface and lysosomes appear in their place. We believe the tubules are pinched off as PFV membrane is being added to the vacuole. Microfilaments coat the membrane during all these dynamic events. Since the pH of the vacuole becomes acid during the first few minutes, we are now looking for a direct correlation between PFV fusion and acidification.  相似文献   

18.
Summary In the Golgi region of cultured rat atrial myocytes, condensed secretory protein was seen in Golgi-associated tubules or cisternae which lay beyond, and often separated from, the remainder of the Golgi stacks. These structures appeared to be involved in packaging of condensed secretory protein into atrial granules. Binding sites of HRP-conjugated wheat-germ agglutinin (WGA) in saponin-treated cultured atrial myocytes were examined by electron microscopy with special reference to atrial granules and the tubular structures associated with the Golgi stacks. HRP reaction products were observed in both trans-cisternae of the Golgi stacks and the associated tubular structures. While the majority of atrial granules were devoid of reaction products, some granules, which were connected to the WGA-positive tubular structures in the vicinity of the Golgi trans-cisternae, showed HRP reaction products at their connected necks. Similar results were obtained when sections of the cells embedded in Lowicryl K4M were labeled with WGA coupled to colloidal gold (G-WGA); the Golgi complex was G-WGA positive, whereas no specific binding of G-WGA to atrial granules was observed. These results suggest that glycoproteins and/or glycolipids with oligosaccharides recognized by WGA in the Golgi transcisternae, may be separated from atrial natriuretic peptides which are packaged into atrial granules.Abbreviations ANP atrial natriuretic peptide - HRP horseradish peroxidase - M199 medium 199 - TGN trans-Golgi network - WGA wheat-germ agglutinin - G-WGA WGA coupled to colloidal gold  相似文献   

19.
Three straining protocols for the ultrastructural visualization of concanavalin A (ConA) and wheat germ agglutinin (WGA) binding sites were applied to samples of nervous tissue embedded in Lowicryl K4M. The hypothalamo-neurohypophysial neurosecretory system was chosen for this investigation because it has two major neuronal populations, one secreting vasopressin, whose precursor is glycosylated, and the other secreting oxytocin whose precursor form is not glycosylated. The series of incubations of the tissue sections for the three protocols were: Protocol 1: i) non labeled ConA or WGA; ii) ConA or WGA antibody; iii) protein A-gold; Protocol 2: i) pre-prepared WGA-anti-WGA complex; ii) protein A-gold; Protocol 3: i) peroxidase-labeled ConA or WGA; ii) anti-peroxidase; iii) protein A-gold. The three methods allowed to detect fine differences in the distribution of sugar residues. This, in turn, made it possible to distinguish vasopressin granules containing precursor forms from those containing processed precursor. At the light microscopic level the three methods were successfully applied to paraffin and 1-micron methacrylate sections by using a second antibody, PAP complex and the diaminobenzidine reaction.  相似文献   

20.
Encephalitozoon cuniculi grow within ever-increasing parasitophorous vacuoles (PV) in peritoneal macrophages. The PV boundary membrane conforms to a rich arrangement of blebs; similar, but free vesicles were observed within the PV space. An iron dextran-concanavalin A marker was used to express visually clustered distributions of Con A receptors on the PV boundary blebs and free vesicles; no marker was observed on other membrane surfaces within the PV. These results, combined with the observation that the PV grows while the host cytoplasm decreases in mass, implicate the PV boundary blebs of interiorizing into vesicles by a pinocytic mechanism. Phagocytic vacuoles, secondary lysosomes and pinocytic vesicles were labeled by incubating infected macrophages in minimum essential medium with ferritin. Ferritin readily accumulated in secondary lysosomes and phagocytic vacuoles; however, ferritin was excluded from parasitophorous vacuoles containing E. cuniculi. Acid phosphatase cytochemical reaction product was observed in lysosomes and phagocytic vacuoles; however, parasitophorous vacuoles with vegetative E. cuniculi were always negative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号