首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work from this laboratory (Rovera and Baserga, 1971) has shown that, when density-inhibited WI-38 human diploid fibroblasts are stimulated to proliferate by a change of medium, the synthesis of nuclear acidic proteins increases within 30 minutes after stimulation; several hours before DNA synthesis begins to increase. Similar results have now been obtained with density-inhibited 3T6 mouse fibroblasts, also stimulated by a change of medium. Gel electrophoretic analysis of nuclear acidic proteins in both WI-38 human diploid fibroblasts and 3T6 mouse fibroblasts stimulated to proliferate indicates that the increased synthesis of nuclear acidic proteins is limited to certain classes of proteins while other classes are totally unaffected. The increase in nuclear acidic proteins synthesis is inhibited when WI-38 cells or 3T6 cells are stimulated in the presence of 5-azacytidine (10 μg/ml), a treatment which also inhibits the subsequent stimulation of DNA synthesis. These results, confirming and extending similar findings previously reported in other models of stimulated DNA synthesis, lend further support to the hypothesis that nuclear acidic proteins may play a critical role in the control of DNA synthesis and cell division in mammalian cells.  相似文献   

2.
In this report, we examine the effect of temperature on protein synthesis. The rate of protein accumulation is determined by three factors: the number of working ribosomes, the rate at which ribosomes are working, and the rate of protein degradation. Measurements of RNA/protein ratios and the levels of individual ribosomal proteins and rRNA show that the cellular amount of ribosomal machinery in Escherichia coli is constant between 25 and 37°C. Within this range, in a given medium, temperature affects ribosomal function the same as it affects overall growth. Two independent methodologies show that the peptide chain elongation rate increases as a function of temperature identically to growth rate up to 37°C. Unlike the growth rate, however, the elongation rate continues to increase up to 44°C at the same rate as between 25 and 37°C. Our results show that the peptide elongation rate is not rate limiting for growth at high temperature. Taking into consideration the number of ribosomes per unit of cell mass, there is an apparent excess of protein synthetic capacity in these cells, indicating a dramatic increase in protein degradation at high temperature. Temperature shift experiments show that peptide chain elongation rate increases immediately, which supports a mechanism of heat shock response induction in which an increase in unfolded, newly translated protein induces this response. In addition, we find that at low temperature (15°C), cells contain a pool of nontranslating ribosomes which do not contribute to cell growth, supporting the idea that there is a defect in initiation at low temperature.  相似文献   

3.
Ribosome synthesis in bacteria is linked to RNA polymerase synthesis; both synthesis rates depend upon the values of six parameters: (1) fraction of total ribosomes that is functioning, (2) fraction of total RNA polymerase that is functioning, (3) fraction of functioning RNA polymerase engaged in rRNA synthesis, (4) fraction of total protein that is RNA polymerase protein, (5) peptide chain elongation rate, (6) rRNA chain elongation rate. If these parameters are constant in time, then the numbers of both ribosomes and RNA polymerase molecules increase exponentially. It is shown how the rate constant (fractional increase per unit of time) relates to these parameters and how the kinetics of ribosome and RNA polymerase synthesis respond to a change in any of these parameters.  相似文献   

4.
J J Cholon  R G Knopf  R M Pine 《In vitro》1979,15(9):736-742
Human embryonic lung fibroblasts (IMR-90 and WI-38) were arrested in the G1 phase of the cell cycle by serum deprivation and high population density. Within 1 hr after the addition of medium containing fresh serum, these cells showed an increase in rRNA synthesis. The inclusion of 100 micrograms per ml aminonucleoside of puromycin (AMS) in the fresh medium eliminated the serum stimulation of rRNA synthesis and prevented the cells from making the G1-resting phase to G1-prereplicative phase transition. AMS also prevented the synthesis of HnRNA normally found within 10 hr after serum stimulation. Serum-stimulated RNA synthesis in starved, SV-40 transformed fibroblasts (WI-38-VA-13 cells) was inhibited, but not completely prevented, by AMS indicating that transformed cells may produce specific RNA's that are not AMS-sensitive and that may be responsible for the failure of transformed cells to be arrested in G1.  相似文献   

5.
When resting confluent monolayers of WI-38 fibroblasts are stimulated to proliferate by serum, DNA synthesis begins to increase between 15-18 h after stimulation. Chromatin-bound protein kinase activity increases in stimulated cells within 1 h after the nutritional change, concomitant with an increase in the template activity of nuclear chromatin. Addition of dibutyryl 3' : 5'-cyclic adenosine monophosphate (dibutyryl cyclic) AMP to the stimulating medium inhibits the entrance of cells into S phase, but only if dibutyryl cyclic AMP (5-10(-4) M) is added before the onset of DNA synthesis. The increases in chromatin template activity and in the chromatin-bound kinase activity are not inhibited by dibutyryl cyclic AMP in the early hours after stimulation, but are completely inhibited after the 5th hour from the nutritional change. This seems to indicate that in stimulated WI-38 cells, dibutyryl cyclic AMP exerts its inhibitory action somewhere between 5 and 12 h after stimulation. A number of protein kinase activities were extracted from chromatin with 0.3 M NaCl and partially resolved on a phosphocellulose column. Two distinct peaks of protein kinase activity appeared to be markedly increased in WI-38 cells 6 h after serum stimulation. Both peaks of increased activity were inhibited by dibutyryl cyclic AMP in vivo. Adenosine, sodium butyrate and adenosine 5'-monophosphate (AMP) do not inhibit the increase in DNA synthesis nor the increase in protein kinase activity. The results suggest that stimulation of cell proliferation in confluent monolayers of WI-38 cells causes an increase (or the new appearance) of certain chromatin-bound protein kinases, and that this increase is inhibited by cyclic AMP in vivo.  相似文献   

6.
Scorbutic guinea pigs were wounded and the influence of administering ascorbic acid 6 days later was studied with respect to cellular morphology, ribosomal distribution and protein synthesis. Electron-microscopic studies revealed that the dilated endoplasmic reticulum observed in the fibroblasts of scorbutic wound tissue had reverted to a normal configuration 24h after intraperitoneal injection of 100mg of ascorbate. Quantitative determination of the distribution of free and membrane-bound ribosomes indicated a significant increase in membrane-bound ribosomes in wound tissue from ascorbate-supplemented (recovery) animals. Sucrose-density-gradient centrifugation indicated a significant increase in the proportion of large membrane-bound polyribosomes in the range 300-350S and a concomitant decrease in 80S monoribosomes in the ribosome sedimentation profile of recovery tissue. Determination of the synthesis of non-diffusible [(3)H]hydroxyproline in scorbutic and recovery wounds showed a 3-4-fold stimulation in peptidyl-proline hydroxylation in recovery tissues. Studies carried out in which scorbutic and recovery tissues were incubated with [(14)C]leucine indicated that general protein synthesis, as measured by (14)C incorporated into non-diffusible material/mug of DNA, was unaltered by ascorbate supplementation. Similar studies of [(3)H]proline incorporation suggested that in recovery tissues there was a small but significant increase in [(3)H]proline incorporated/mug of DNA, which probably represents an increase in protocollagen synthesis. This observation correlates well with the increase seen in recovery tissues of large polyribosomes on which collagen precursor polypeptides are known to be synthesized. Preliminary characterization of the repair collagen synthesized by recovery animals showed it to be a typical Type I collagen having the chain composition (alpha(1))(2)alpha(2). The extent of glycosylation of the hydroxylysine of the newly synthesized collagen was greater than that reported for either normal guinea-pig dermal collagen or dermal scar collagen.  相似文献   

7.
Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells   总被引:1,自引:0,他引:1  
Synthesis of DNA-binding proteins was investigated in WI-38 human diploid fibroblast cultures after stimulation with serum containing medium. Density-inhibited confluent monolayers of young (phase II) and aging (phase III) WI-38 cells can be stimulated to synthesize DNA by replacing the medium with fresh medium containing 10% fetal calf serum. Of the phase II cells, 35–50% showed a partially synchronized burst of DNA-synthesizing activity between 15 and 24 h whereas only 4–6% of phase III cells showed DNA-synthesizing activity at 20 h, and that cell fraction was increasing even at 38 h. This suggests either an extremely prolonged G 1 in stimulated phase III cells, or a heterogeneity of the population (e.g., a mixed population of pre- and postmitotic cells) for phase III cells. At various times after the change of medium, DNA-binding protein synthesis was examined in these stimulated cultures. Protein of mol. wt 20 000–25 000 D accumulated rapidly during early G 1 and declined thereafter, whereas larger protein (40 000 and 68 000 D) accumulated during the late G 1 or G 1-S transition period indicating that accumulation of these proteins is associated with the onset of DNA synthesis in the serum-stimulated cells. In cultures where the DNA synthesis has been reduced or inhibited by an excess of thymidine, hydroxyurea or dibutyryl cAMP, the accumulation of the larger proteins (40 000 and 68 000 D) was neglible as compared with non-stimulated cultures. Hydrocortisone did not exert any effect on the DNA-binding protein synthesis in phase II cells. However, it seems to increase the cell fraction which can respond to the serum factor in phase III cells as evidenced from the pattern of DNA-binding proteins synthesis.  相似文献   

8.
When resting WI-38 cells in a confluent monolayer were stimulated to proliferate by changing the medium, the incorporation of leucine-3H into nuclear acidic proteins was promptly stimulated, although its incorporation into total cellular proteins was unchanged or even decreased. Three fractions, all acidic by aminoacid analysis, were extracted from the nuclei: (1) ribonucleoproteins (RNP); (2) a fraction extractable with 0.15 M NaC1; and (3) a fraction tenaciously bound to the insoluble residue (residual fraction). A first increase occurred between one and three hours after stimulation in all three fractions. The synthesis of NaCl-soluble proteins then returned to control levels, while the synthesis of residual and RNP proteins remained high between 6 and 12 hours and increased even further at 18 hours, the peak of DNA synthesis. Pulse chase experiments indicated that the proteins synthesized in the first hour after stimulation have a turnover time of less than four hours, while the same fractions in non-proliferating cells were stable for at least 12 hours. 2-mercapto-1-(β-4-pyridethyl) benzimidazole, when added at the same time as the fresh medium, produced an inhibition of the increase in nuclear protein synthesis at one hour, but, if added at five hours after stimulation, it did not inhibit the increase in nuclear protein synthesis occurring at six hours. Actinomycin D (0.01 μg/ml) inhibited both the stimulation of DNA synthesis and the increases in nuclear acidic protein synthesis occurring at one and six hours after stimulation. These results seem to indicate that the serum factors responsible for the stimulation of WI-38 cells, after binding to cells, induce an early synthesis of acidic nuclear proteins which is sensitive to very low doses of actinomycin D. In turn, the newly synthesized proteins could in some way activate in the nuclei the genes that control DNA synthesis and cell division.  相似文献   

9.
Cycloheximide at concentrations of 0.1-100mum stimulated chlorophyll synthesis when dark-grown cells of Euglena were illuminated. Chloramphenicol (1-4mm) inhibited chlorophyll synthesis. The effect of cycloheximide on the incorporation of [(14)C]leucine into material insoluble in trichloroacetic acid, and its failure to affect the incorporation of [(32)P]orthophosphate into such material in short incubations, are interpreted as evidence that cycloheximide specifically inhibits protein synthesis by 80S ribosomes. Since the inhibitory effect of chloramphenicol on chlorophyll synthesis is counteracted by the presence of cycloheximide, it is suggested that chlorophyll synthesis is subject to control by a cytoplasmic repressor synthesized on 80S ribosomes, and to a de-repressor synthesized on 70S ribosomes.  相似文献   

10.
11.
Exposure of isolated rat gastric mucosal cells to 10(-10) and 10(-9) M gastrin (G-17-I) for 2 hr significantly stimulated [3H]leucine incorporation (15 min pulse) into protein by 100 and 212%, respectively, when compared with the basal levels. Doses beyond 10(-9) M lowered the maximal stimulatory effect of the hormone. Gastrin (10(-9) M) specifically stimulated the synthesis of five proteins in isolated gastric mucosal cells with apparent molecular weights of 105, 76, 71, 63, and 54 kDa. Actinomycin-D (10 micrograms/ml) completely abolished the gastrin-mediated stimulation of protein synthesis in isolated gastric mucosal cells.  相似文献   

12.
1. At 28 degrees C, synthesis of protein cyst coat in ciliates of Colpoda steinii is induced by washing with water and, as judged by glutamic acid assays and incorporation studies with l-[U-(14)C]leucine, starts about 30min after the cells have stopped swimming and is largely complete 90min later. During this time up to 70% of the protein synthesized by the cell is coat protein. 2. When cells were placed in l-[U-(14)C]leucine at low concentrations (0.25-0.76mm) during the period of coat synthesis there was no lag in uptake. Only a small proportion of the leucine incorporated into the coat was from the external substrate, implying that the rate of radioactive isotope incorporation measured the rate of transport of amino acid into the cell. Transport of l-[U-(14)C]leucine into the cell was markedly stimulated by l-glutamic acid and l-lysine. 3. When cells were placed in l-[U-(14)C]leucine at high concentrations (38mm) the rate of incorporation was considered to measure the rate of protein synthesis, but because the latter may have been affected by substrate it is concluded that such measurements are of doubtful value.  相似文献   

13.
The cytotoxic test system for Shigella shigae toxin was improved and used to study the stability of the toxin to various pH values, temperature, and chemicals. Inhibition of protein synthesis is the first demonstrable effect in cells treated with Shigella toxin. This inhibition appears to be at the level of peptide chain elongation. An inhibition effect on cell-free protein synthesis is exhibited by toxin pretreated first with trypsin and then with dithiothreitol and 8 M urea or 1% sodium dodecyl sulfate. Ribosomes treated with toxin or its A1 fragment had lost most of their ability to polymerize [14C]phenylalanine in a poly(U)-dependent cell-free system. Salt-washed ribosomes in simple buffered solutions were inactivated at a rate of at least 40 ribosomes/(min) (A1 fragment). Addition of antitoxin immediately stopped further inactivation, but it did not reactivate the inactivated ribosomes. 60 S ribosomal subunits from toxin-treated ribosomes had a marked reduction in ability to support polyphenylanine synthesis, whereas 40 S subunits from toxin-treated ribosomes retained their activity. Toxin-treated ribosomes retained their ability to incorporate [3H]puromycin into growing peptide chains, indicating that the peptide bond formation is not the function inhibited.  相似文献   

14.
Mammalian mitochondrial ribosomes from rat liver synthesised poly(phenylalanine) from [14C]-Phe-tRNA in the presence of a homologous 10(5) X gav supernatent fraction. The activity depended on the addition of synthetic template and was resistant to cycloheximide. The polyanion spermidine had a stimulatory effect on peptide synthesis in vitro. In contrast to Escherichia coli ribosomes, which also functioned with heterologous supernatant fractions, 55-S mitochondrial ribosomes were inactive when supplemented with heterologous supernatant fractions from E. coli or with purified bacterial elongation factors. EF-T slightly stimulated polyphenylalanine synthesis when added in combination with mitochondrial supernatant fractions. Two-dimensional electrophoretic analysis of the protein content of both supernatant fractions revealed considerable differences in the distribution of the species-specific proteins according to their isoelectric points. The mitochondrial supernatant proteins were in general more basic, and the few acidic proteins did not co-migrate with EF-Tu or EF-G from E. coli.  相似文献   

15.
Freshly harvested zoospores of Blastocladiella emersonii begin to germinate about 15 min after inoculation into a defined growth medium at a density of 10(6) zoospores per ml. Flagellum retraction accompanies encystment, and dispersal of the ribosomal nuclear cap takes place shortly thereafter. The primary rhizoid begins to emerge at 25 to 30 min and starts to branch at ca. 60 min. The first nuclear division occurs between 120 and 190 min. The dry weight per cell increases linearly after 60 min, whereas the deoxyribonucleic acid per cell doubles between 120 and 240 min. A linear increase in total ribonucleic acid (RNA) is detectable beginning at 40 to 45 min, and in total protein beginning at 80 min; neither process is interrupted during nuclear division. Encystment and nuclear cap disorganization are associated with a sharp rise in the rates of precursor incorporation into RNA and protein. Cycloheximide at 20 mug/ml prevents leucine incorporation at all stages and inhibits development beyond the earliest encystment stage. Actinomycin D at 25 mug to 50 mug/ml prevents uracil incorporation, but it has no effect on leucine incorporation or development until 40 to 45 min. At the latter stage, actinomycin D causes a sharp developmental arrest and begins to inhibit leucine incorporation. It is concluded that early protein synthesis must occur on the ribosomes formed during the prior growth phase and conserved through the zoospore stage in the nuclear cap. The results further indicate that this synthesis is dependent upon messenger RNA already present in the zoospore before germination.  相似文献   

16.
17.
The effects of fresh medium and serum on protein synthesis in suspension-cultured HeLa cells after growth to high cell density (>5 × 105 cells/ml) were studied. Cells which were resuspended in fresh medium plus serum and grown for 24 hours (control) were compared with cells grown for 2 hours after resuspension (stimulated). The spectrum of proteins being synthesized by control and stimulated cells does not appear to be grossly different; that is, the weight and number average molecular weights of newly synthesized whole-cell protein are about the same in both cultures. Also, no significant differences were observed in the number of ribosomes per polysome or in the fraction of total ribosomes in polysomes. However, the transit times (combined elongation and termination times) were found to differ significantly; the average transit time for control cells was 2.24 minutes, while the average transit time for stimulated cells was 1.26 minutes. (An appendex evaluating the methodology involved in measuring the transit time is included.) In agreement with the difference in transit time, the absolute rate of protein synthesis in stimulated cells was approximately 1.8 times the rate measured in control cells. These data are taken as evidence that under certain conditions, the rate of elongtion and/or termination of polypeptide chains limits the overall rate of translation, and that cells can respond to growth conditions by changing the elongation and/or termination rate of protein synthesis.  相似文献   

18.
Effect of vitamin A on epithelial morphogenesis in vitro   总被引:1,自引:0,他引:1  
Quiescent confluent monolayers of WI-38 human diploid fibroblasts and of 3T6 mouse fibroblasts were stimulated to proliferate by nutritional changes. WI-38 cells had a stringent requirement for serum factor(s) but 3T6 did not require serum in order to proliferate again. In both cell lines there was an early increase in the synthesis of non-histone chromosomal proteins shortly after stimulation of cellular proliferation and this increase was linearly correlated to the number of cells entering the S phase several hours later. Only WI-38 diploid fibroblasts, however, showed an early increase in chromatin template activity 1 h after stimulation of cellular proliferation, while chromatin template activity in 3T6 cells remained unchanged. It is suggested that the activation of gene function represents a critical step for the passage of WI-38 cells in the G0 resting phase to the G1 phase of the cell cycle. It is also suggested that 3T6 cells are unable to enter or stay in a G0 phase but can be arrested predominantly in the G1 phase by nutritional deficit, probably amino acid starvation.  相似文献   

19.
Ribosomal L10-L7/L12 protein complex and L11 bind to a highly conserved RNA region around position 1070 in domain II of 23 S rRNA and constitute a part of the GTPase-associated center in Escherichia coli ribosomes. We replaced these ribosomal proteins in vitro with the rat counterparts P0-P1/P2 complex and RL12, and tested them for ribosomal activities. The core 50 S subunit lacking the proteins on the 1070 RNA domain was prepared under gentle conditions from a mutant deficient in ribosomal protein L11. The rat proteins bound to the core 50 S subunit through their interactions with the 1070 RNA domain. The resultant hybrid ribosome was insensitive to thiostrepton and showed poly(U)-programmed polyphenylalanine synthesis dependent on the actions of both eukaryotic elongation factors 1alpha (eEF-1alpha) and 2 (eEF-2) but not of the prokaryotic equivalent factors EF-Tu and EF-G. The results from replacement of either the L10-L7/L12 complex or L11 with rat protein showed that the P0-P1/P2 complex, and not RL12, was responsible for the specificity of the eukaryotic ribosomes to eukaryotic elongation factors and for the accompanying GTPase activity. The presence of either E. coli L11 or rat RL12 considerably stimulated the polyphenylalanine synthesis by the hybrid ribosome, suggesting that L11/RL12 proteins play an important role in post-GTPase events of translation elongation.  相似文献   

20.
We purified acidic ribosomal proteins (P1 and P2) in good yield from rat liver ribosomes by precipitation of ribosomes with MgCl2 prior to ethanol extraction and chromatography of the extract on a column of CM-cellulose at pH 4.8. The newly-synthesized acidic ribosomal proteins in regenerating rat liver, labeled in vivo with [3H]leucine, were rapidly incorporated into cytoplasmic ribosomes without any detectable time lag and, after reaching a maximum at 30 min, they gradually disappeared from the ribosomes, suggesting a short metabolic-life. However, it was found later that they were re-incorporated slowly when newly-labeled proteins were "chased" by an injection of a large amount of cold leucine intraperitoneally at 15 min after the injection of [3H]leucine. Furthermore, in a long-term experiment, acidic ribosomal proteins were found to disappear with a half-life of 100 h from the ribosomes. Thus, these results suggest that acidic ribosomal proteins have a long metabolic life and are exchangeable on cytoplasmic ribosomes in regenerating rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号