首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Guo J  Zhou J  Wang D  Yang J  Li Z 《Biodegradation》2008,19(1):93-98
The accelerating effect of quinones has been studied in the bio-decolorization processes, but there are no literatures about the incorporation bio-treatment technology of the bromoamine acid (BA) wastewater and azo dyes wastewaters under high-salt conditions (NaCl, 15%, w/w). Here we described the BA wastewater as a redox mediator in the bio-decolorization of azo dye wastewaters. Decolorization of azo dyes was carried out experimentally using the salt-tolerant bacteria under the BA wastewater and high-salt conditions. The BA wastewater used as a redox mediator was able to increase the decolorization rate of wastewater containing azo dyes. The effects of various operating conditions such as dissolved oxygen, temperature, and pH on microbial decolorization were investigated experimentally. At the same time, BA was tested to assess the effects on the change of the Oxidation–Reduction Potential (ORP) values during the decolorization processes. The experiments explored a great improvement of the redox mediator application and the new bio-treatment concept.  相似文献   

4.
Poly-L-alpha,beta-diaminopropionic acid) having azo aromatic side chain was synthesized by the water-soluble carbodiimide procedure. The photochemical properties of the azo polypeptide poly[N beta-p-(phenylazo)benzoyl-L-alpha,beta-diaminopropionic acid] (PPABLDPA) was investigated by absorption and circular dichroism (c.d.) spectroscopy in hexafluoro-2-propanol (HFIP) and dimethylformamide. The photochromism of the absorption band in the visible and ultraviolet wavelength regions was found to be mostly reversible as a function of irradiation time at different wavelengths due to the photostationary state (88% trans)-cis photoisomerization of the azo aromatic moieties. The c.d. spectra exhibited two and three-stage photochromism on irradiation by light. The reversible photo-induced solubility change was also studied. On irradiation PPABLDPA is soluble under ultraviolet light (cis) and precipitates under visible light (88% trans) in HFIP-water. A discussion was presented that includes our previous results on this azo aromatic polylysine homologue series.  相似文献   

5.
Basic and applied aspects in the microbial degradation of azo dyes   总被引:27,自引:0,他引:27  
Azo dyes are the most important group of synthetic colorants. They are generally considered as xenobiotic compounds that are very recalcitrant against biodegradative processes. Nevertheless, during the last few years it has been demonstrated that several microorganisms are able, under certain environmental conditions, to transform azo dyes to non-colored products or even to completely mineralize them. Thus, various lignolytic fungi were shown to decolorize azo dyes using ligninases, manganese peroxidases or laccases. For some model dyes, the degradative pathways have been investigated and a true mineralization to carbon dioxide has been shown. The bacterial metabolism of azo dyes is initiated in most cases by a reductive cleavage of the azo bond, which results in the formation of (usually colorless) amines. These reductive processes have been described for some aerobic bacteria, which can grow with (rather simple) azo compounds. These specifically adapted microorganisms synthesize true azoreductases, which reductively cleave the azo group in the presence of molecular oxygen. Much more common is the reductive cleavage of azo dyes under anaerobic conditions. These reactions usually occur with rather low specific activities but are extremely unspecific with regard to the organisms involved and the dyes converted. In these unspecific anaerobic processes, low-molecular weight redox mediators (e.g. flavins or quinones) which are enzymatically reduced by the cells (or chemically by bulk reductants in the environment) are very often involved. These reduced mediator compounds reduce the azo group in a purely chemical reaction. The (sulfonated) amines that are formed in the course of these reactions may be degraded aerobically. Therefore, several (laboratory-scale) continuous anaerobic/aerobic processes for the treatment of wastewaters containing azo dyes have recently been described.  相似文献   

6.
1H NMR spectroscopy coupled with in situ laser irradiation has been used together with density functional theory (DFT) computation to examine the structures of the photoisomers of a series of sulfonated reactive azo dyes. Assignment of 1H NMR spectra acquired at the photostationary state has allowed, for the first time, NMR characterisation of unstable cis isomers of commercially relevant water-soluble azo dyes. Structural features of the two isomeric forms predicted by DFT calculations are clearly reflected in the experimental NMR data. The trans-cis photoisomerisation process could be unambiguously identified in each case, based on the large chemical shift change observed for resonances associated with aromatic protons adjacent to the azo linkage.  相似文献   

7.
《Inorganica chimica acta》2006,359(9):3007-3013
Organoiron polymers with azo dyes pendant to the backbone incurred loss of color upon irradiation with UV light (λ = 300 nm) in acetonitrile solution. The loss of color is attributed to the interaction of the cleaved iron moiety with the azo chromophore. Similarly, addition of small amounts (⩽1 mM) of both Fe(II) and Fe(III) to the organic polymer analogue yielded comparable discoloration rates upon irradiation. The iron cation forms a complex with the azo chromophore group in the polymer, and subsequently leads to the photodegradation of the azo dye. At higher initial polymer concentrations, minimal discoloration was observed due to the light attenuation effect of the deeply colored solutions. In the presence of small amounts of water, the iron cation is inhibited from partaking in complex formation and no polymer discoloration was observed. For the organic polymer analogue, the presence of water did not show significant change over its absence upon irradiation. The discoloration of the polymer relies solely on its interaction with the iron cation present in solution, and does not require addition of any catalyst or reagent. This process might be developed into a pragmatic and viable method for the treatment of specifically designed colored materials using only UV light.  相似文献   

8.
Azo dyes are toxic, highly persistent, and ubiquitously distributed in the environments. The large-scale production and application of azo dyes result in serious environmental pollution of water and sediments. Bacterial azo reduction is an important process for removing this group of contaminants. Recent advances in this area of research reveal that azo reduction by Shewanella strains is coupled to the oxidation of electron donors and linked to the electron transport and energy conservation in the cell membrane. Up to date, several key molecular components involved in this reaction have been identified and the primary electron transportation system has been proposed. These new discoveries on the respiration pathways and electron transfer for bacterial azo reduction has potential biotechnological implications in cleaning up contaminated sites.  相似文献   

9.
Shan X J  Jin X S  Zhou Z P  Dai F Q 《农业工程》2012,32(5):240-243
Anthropogenic activities and environmental changes have had a significant effect on the fishery ecosystem, biological characteristics, and population dynamics of marine fishes. Overfishing threatens the sustainability of many populations. We evaluated changes in the biological characteristics, distribution, and abundance of Cleisthenes herzensteini using bottom trawl survey data collected from 1985 to 2010 in the central and southern Yellow Sea. The dominant body length of C. herzensteini during spring was 80–160 mm in 1986, 60–160 mm in 1998, and 41–80 mm and 111–170 mm in 2010. During summer, the dominant body length was 80–180 mm and 130–169 mm in 2000 and 2007, respectively. During autumn, the dominant body length was 60–160 mm, 100–180 mm, and 90–149 mm in 1985, 2000, and 2009, respectively. During winter, the dominant body length was 80–200 mm, 120–220 mm, and 100–200 mm in 1985, 1999, and 2010, respectively. The dominant body length decreased gradually from 1985 to 2010 (excluding spring, 2010), illustrating the “miniaturization” of the C. herzensteini population. Growth was significantly different between male and female individuals, with male individuals forming a “smaller-size type”. The sex ratio of C. herzensteini was relatively stable during spring and summer, but significantly different during autumn and winter. The diet of C. herzensteini also changed significantly from 1985 to 2010. During 1985–1986, the diet consisted primarily of Crangon affinis, Eualus sinensis and Gammaridae species. C. affinis, Engraulis japonicus, and Ammodytes personatus were dominant during 1998–2000, whereas C. affinis was the dominant prey species during 2009–2010. Thus, there was a clear decrease in dietary diversity, with a shift to benthos shrimp, particularly C. affinis, which accounted for 82.58% of the total diet (by weight) in 2010. The gastric vacuous rate also decreased in every season and the gonad developmental stage changed with each season. The distribution of C. herzensteini shifted northward and offshore and became more concentrated. The average catch per haul of C. herzensteini decreased in spring and autumn. The average catch per haul ranged from 1.44 kg h-1 to 0.14 kg h-1 in spring and the percentage by weight ranged from 6.53% to 1.28%. The average catch per haul ranged from 3.03 kg h-1 to 0.26 kg h-1 in autumn and the percentage by weight ranged from 8.00% to 0.60%. The average catch per haul increased significantly during summer, ranging from 0.18 kg h-1 to 0.58 kg h-1, with a percentage by weight of 0.03–0.80%. The average catch per haul was relatively stable in winter (around 1.00 kg h-1), but the percentage by weight gradually increased during 1985–2010. Taken together, our results suggested that the population structure, diet composition, and distribution of C. herzensteini had been altered during the last three decades. To address this, it is essential to initiate measures to conserve the C. herzensteini resource.  相似文献   

10.
《Inorganica chimica acta》1988,145(2):181-184
The azo group by itself is a weak ligand, but when it is part of a chelate ring it often forms quite stable complexes in which the azo group occupies a single coordination position. The other coordinating member (or members) of the chelate ring (or rings) may be parts of neutral groups (e.g. NH2 or OCH3) or potentially negative groups (e.g. −OH, −SH or −COOH). Thus, a variety of structures can be constructed, depending upon the nature of the metal and the functionality of the azo dyes. This article describes some lakes of azo dyes in which the dye contains three coordinating atoms, one of which is acidic.  相似文献   

11.
The vertical biomass allocation patterns of roots grown under standardised conditions were determined for species representing the major New Zealand indigenous grass genera Chionochloa and Festuca. Ten ramets, each of 2–3 tillers from garden collections of each species were grown in irrigated vertical sand columns in a glasshouse, and harvested after 168 days. Chionochloa teretifolia, Chionochloa macra, and Chionochloa crassiusucula, characteristic of alpine environments failed to produce new roots and died. However, most of the Chionochloa taxa (Chionochloa beddiei, Chionochloa pallens, Chionochloa rigida ssp. rigida, Chionochloa rubra ssp. cuprea, Chionochloa vireta), developed extensive new roots that reached the base of the one metre sand column. Roots of Chionochloa cheesemanii and Chionochloa conspicua reached 80–90 cm depth. Two Festuca taxa (Festuca actae, Festuca luciarum) had roots to 1 m depth, and roots of Festuca coxii, Festuca matthewsii ssp. latifundii, Festuca matthewsii ssp. matthewsii, Festuca multinodis, and Festuca novae-zelandiae grew to 70–90 cm depth. The edaphic specialists (Festuca deflexa, Chionochloa spiralis, Chionochloa defracta) were all shallow rooting.Species of Festuca maintained at least 40% of the root mass in the upper 10 cm of the column and most of the Chionochloa taxa had less than 40% of root mass in the upper zone. Genotype level variation in root mass less than 10 cm deep was greater in Chionochloa than in Festuca, and least in the edaphic specialist grasses.  相似文献   

12.
In previous papers, the synthesis and chemical properties of iron-complexed azo and formazan dyes were reported. It was shown that in certain cases iron could be substituted for the traditionally used metals such as chromium and cobalt, without having an adverse effect on dye stability. While these results suggested that the iron analogs were potential replacements for the commercially used chromium and cobalt prototypes, characterization of potentially adverse environmental effects of the new dyes was deemed an essential step in their further development. The present paper provides results from using the Salmonella/mammalian microsome assay to determine the mutagenicity of some important commercial metal complexed dyes, their unmetallized forms, and the corresponding iron-complexed analogs. The study compared the mutagenic properties of six unmetallized azo dyes, six commercial cobalt- or chromium-complexed azo dyes, six iron-complexed azo dyes, six unmetallized formazan dyes, and six iron-complexed formazan dyes. The results of this study suggest that the mutagenicity of the unmetallized dye precursors plays a role in determining the mutagenicity of the iron-complexes. For the monoazo dye containing a nitro group, metal complex formation using iron or chromium decreased or removed mutagenicity in TA100; however, little reduction in mutagenicity was noted in TA98. For the formazan dye containing a nitro group, metal-complex formation using iron increased mutagenicity. Results varied for metal-complexes of azo and formazan dyes without nitro groups, but in general, the metal-complexed dyes based on mutagenic ligands were also mutagenic, while those dyes based on nonmutagenic ligands were nonmutagenic.  相似文献   

13.
Azo compounds constitute the largest and the most diverse group of synthetic dyes and are widely used in a number of industries such as textile, food, cosmetics and paper printing. They are generally recalcitrant to biodegradation due to their xenobiotic nature. However microorganisms, being highly versatile, have developed enzyme systems for the decolorization and mineralization of azo dyes under certain environmental conditions. Several genera of Basidomycetes have been shown to mineralize azo dyes. Reductive cleavage of azo bond, leading to the formation of aromatic amines, is the initial reaction during the bacterial metabolism of azo dyes. Anaerobic/anoxic azo dye decolorization by several mixed and pure bacterial cultures have been reported. Under these conditions, this reaction is non-specific with respect to organisms as well as dyes. Various mechanisms, which include enzymatic as well as low molecular weight redox mediators, have been proposed for this non-specific reductive cleavage. Only few aerobic bacterial strains that can utilize azo dyes as growth substrates have been isolated. These organisms generally have a narrow substrate range. Degradation of aromatic amines depends on their chemical structure and the conditions. It is now known that simple aromatic amines can be mineralized under methanogenic conditions. Sulfonated aromatic amines, on the other hand, are resistant and require specialized aerobic microbial consortia for their mineralization. This review is focused on the bacterial decolorization of azo dyes and mineralization of aromatic amines, as well as the application of these processes for the treatment of azo-dye-containing wastewaters.  相似文献   

14.
A method is presented that allows the isolation of eight different phenylazo derivatives of bile bilirubin. In step I of the isolation procedure, three bilirubin fractions (bilirubin fractions 1, 2 and 3) from human hepatic bile are separated by reverse-phase partition chromatography on silicone-treated Celite with the use of a solvent system prepared from butan-1-ol and 5mm-phosphate buffer, pH6.0. Azo coupling is then performed with diazotized aniline. The three azo pigment mixtures are subjected to step II, in which the above chromatography system is used again. With each azo pigment mixture this step brings about the separation of a non-polar and a polar azo pigment fraction (azo 1A and azo 1B, azo 2A and azo 2B, and azo 3A and azo 3B from bilirubin fractions 1, 2 and 3 respectively). Approximately equal amounts of non-polar and polar pigments are obtained from bilirubin fractions 1 and 2, whereas bilirubin fraction 3 yields azo 3B almost exclusively. In step IIIA the non-polar azo pigment fractions are fractionated further by adsorption chromatography on anhydrous sodium sulphate with the use of chloroform followed by a gradient of ethyl acetate in chloroform. Three azo pigments are thus obtained from both azo 2A (azo 2A(1), azo 2A(2) and azo 2A(3)) and azo 3A (azo 3A(1), azo 3A(2) and azo 3A(3)). The 2A pigments occur in approximately the following proportions: azo 2A(1), 90%; azo 2A(2), 10%; azo 2A(3), traces. The pigments are purified by crystallization, except for the A(3) pigments, which are probably degradation products arising from the corresponding A(2) pigments. In step IIIB the polar azo pigment fractions are subjected to reverse-phase partition chromatography on silicone-treated Celite with the use of a solvent system prepared from octan-1-ol-di-isopropyl ether-ethyl acetate-methanol-0.2m-acetic acid (1:2:2:3:4, by vol.). Azo pigment fractions 2B and 3B each yield six azo pigments (azo 2B(1) to azo 2B(6) and azo 3B(1) to azo 3B(6) respectively) together with small amounts of products of hydrolysis (azo 2A(B) and azo 3A(B)). Only one azo B pigment is obtained from bilirubin fraction 1, and this azo pigment is probably of the B(2) type. The yields of the azo 3B pigments suggest that these pigments are present in approximately the following proportions: azo 3B(1), 0-0.4%; azo 3B(2), traces; azo 3B(3), traces; azo 3B(4), 10%; azo 3B(5), 50%; azo 3B(6), 40%. Azo pigments 2B(1) to 2B(6) are estimated to occur in similar proportions. Since pairs of correspondingly numbered azo pigments from bilirubin fractions 1, 2 and 3 do not separate on rechromatography together (e.g. azo 2A(1) co-chromatographs with azo 3A(1), and azo 2B(6) co-chromatographs with azo 3B(6)), it is concluded that such pigments are chemically identical. The structures of the isolated phenylazo derivatives are discussed in an accompanying paper (Kuenzle 1970c).  相似文献   

15.
Fourteen mono-azo dyes were used to study the effects of substitution patterns on the biodegradability of dimethyl-hydroxy-azobenzene 4(prm1)-sulfonic acids by Streptomyces chromofuscus A11. Two substitution patterns were analyzed: (i) all possible substitution patterns of the two methyl and hydroxy substitution groups, 2-hydroxy (3,5; 4,5; 5,6) dimethyl and 4-hydroxy (2,3; 2,5; 2,6; 3,5) dimethyl isomers of azobenzene 4(prm1)-sulfonic acid; and (ii) replacement of the sulfonic group with a carboxylic group in these sulfonated azo dyes. The structural pattern of the hydroxy group in para position relative to the azo linkage and of two methyl substitution groups in ortho position relative to the hydroxy group was the most susceptible to degradation. Replacement of the sulfonic group with a carboxylic group enhanced overall dye degradability by S. chromofuscus A11.  相似文献   

16.
The group II azoreductase BTI1 utilizes NADPH to directly cleave azo bonds in water-soluble azo dyes, including quenchers of fluorescence. Unexpectedly, optimal reduction was dye specific, ranging from a pH of <5.5 for Janus green B, to pH 6.0 for methyl red, methyl orange, and BHQ-10, to pH >8.3 for flame orange.  相似文献   

17.
Dyes containing one or more azo linkages are widely applied in cosmetics, tattooing, food and drinks, pharmaceuticals, printing inks, plastics, leather, as well as paper industries. Previously we reported that bacteria living on human skin have the ability to reduce some azo dyes to aromatic amines, which raises potential safety concerns regarding human dermal exposure to azo dyes such as those in tattoo ink and cosmetic colorant formulations. To comprehensively investigate azo dye-induced toxicity by skin bacteria activation, it is very critical to understand the mechanism of metabolism of the azo dyes at the systems biology level. In this study, an LC/MS-based metabolomics approach was employed to globally investigate metabolism of azo dyes by Staphylococcus aureus as well as their effects on the metabolome of the bacterium. Growth of S. aureus in the presence of Sudan III or Orange II was not affected during the incubation period. Metabolomics results showed that Sudan III was metabolized to 4-(phenyldiazenyl) aniline (48%), 1-[(4-aminophenyl) diazenyl]-2-naphthol (4%) and eicosenoic acid Sudan III (0.9%). These findings indicated that the azo bond close to naphthalene group of Sudan III was preferentially cleaved compared with the other azo bond. The metabolite from Orange II was identified as 4-aminobenzene sulfonic acid (35%). A much higher amount of Orange II (~90×) was detected in the cell pellets from the active viable cells compared with those from boiled cells incubated with the same concentration of Orange II. This finding suggests that Orange II was primarily transported into the S. aureus cells for metabolism, instead of the theory that the azo dye metabolism occurs extracellularly. In addition, the metabolomics results showed that Sudan III affected energy pathways of the S. aureus cells, while Orange II had less noticeable effects on the cells. In summary, this study provided novel information regarding azo dye metabolism by the skin bacterium, the effects of azo dyes on the bacterial cells and the important role on the toxicity and/or inactivation of these compounds due to microbial metabolism.  相似文献   

18.
Trametes villosa laccase was used for direct azo dye degradation, and the reaction products that accumulated after 72 h of incubation were analyzed. Liquid chromatography-mass spectrometry (LC-MS) analysis showed the formation of phenolic compounds during the dye oxidation process as well as a large amount of polymerized products that retain azo group integrity. The amino-phenol reactions were also investigated by 13C-nuclear magnetic resonance and LC-MS analysis, and the polymerization character of laccase was shown. This study highlights the fact that laccases polymerize the reaction products obtained during long-term batch decolorization processes with azo dyes. These polymerized products provide unacceptable color levels in effluents, limiting the application of laccases as bioremediation agents.  相似文献   

19.
The oxidative metabolism of procarbazine, its azo, hydrazone, and two azoxy derivatives, and methylhydrazine by hepatic microsomes from phenobarbital-pretreated rats was investigated to elucidate the pathway of metabolism that resulted in methane formation from procarbazine. When incubated with microsomal reaction mixtures fortified with NADPH, all of the compounds, except the azoxy isomers, were metabolized to yield methane. A lag phase in methane formation was noted for procarbazine, but not for the other compounds. Kinetic and inhibition studies utilizing methimazole and ethylhydrazine precluded methylhydrazine as an intermediate in methane formation from procarbazine. When the azo derivative was oxidatively metabolized in the presence of liver microsomes, no hydrazone tautomer was detected. Upon monitoring the production of the azo and hydrazone metabolites formed during microsomal metabolism of procarbazine, the azo derivative was formed in sufficient quantities to account for the majority of the methane produced. In addition, small amounts of hydrazone were also detected. It was concluded that both the azo and hydrazone metabolites of procarbazine contribute to methane formation from the terminal methyl group of the hydrazine with the azo derivative being the predominant source and the hydrazone derivative being a minor source of methane. Consideration of the chemical and enzymatic pathways of procarbazine oxidation and the implication of a methyl radical intermediate in methane formation are discussed.  相似文献   

20.
Destruction of a number of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gradually transforming into benzoate. It was shown that isolated microbial communities are capable of converting the initial substrates--benzyl alcohol, benzoate, salicylic acid, and golden yellow azo dye--into biogas without a lag-phase but with different velocities. Aromatic and linear intermediates of biodestruction of aromatic amines by obtained enrichment cultures were determined for the first time. Selective effect of aromatic substrates on a microbial community that was expressed in decrease in diversity and gradual change of dominant morphotypes was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号