首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of UV-absorbing compounds known as mycosporine-like amino acids (MAAs) by red, green, blue, and white light (43% ambient radiation greater than 390 nm) was examined in sublittoral Chondrus crispus Stackh. Fresh collections or long-term cultures of sublittoral thalli, collected from Helgoland, North Sea, Germany, and containing no measurable amounts of MAAs, were exposed to filtered natural radiation for up to 40 days. The MAA palythine (λmax 320 nm) was synthesized in thalli in blue light to the same extent observed in control samples in white light. In contrast, thalli in green or red light contained only trace amounts of MAAs. After the growth and synthesis period, the photosynthetic performance of thalli in each treatment, measured as pulse amplitude modulated chlorophyll fluorescence, was assessed after a defined UV dose in the laboratory. Thalli with MAAs were more resistant to UV than those without, and exposure to UV-A+B was more damaging than UV-A in that optimal (Fv/Fm) and effective (φII) quantum yields were lower and a greater proportion of the primary electron acceptor of PSII, Q, became reduced at saturating irradiance. However, blue light-grown thalli were generally more sensitive than white light control samples to UV-A despite having similar amounts of MAAs. The most sensitive thalli were those grown in red light, which had significantly greater reductions in Fv/Fm and φII and greater Q reduction. Growth under UV radiation alone had been shown previously to lead to the synthesis of the MAA shinorine (λmax 334 nm) rather than palythine. In further experiments, we found that preexposure to blue light followed by growth in natural UV-A led to a 7-fold increase in the synthesis of shinorine, compared with growth in UV-A or UV-A+B without blue light pretreatment. We hypothesize that there are two photoreceptors for MAA synthesis in C. crispus, one for blue light and one for UV-A, which can act synergistically. This system would predispose C. crispus to efficiently synthesize UV protective compounds when radiation levels are rising, for example, on a seasonal basis. However, because the UV-B increase associated with artificial ozone reduction will not be accompanied by an increase in blue light, this triggering mechanism will have little additional adaptive value in the face of global change unless a global UV-B increase positively affects water column clarity.  相似文献   

2.
The induction of cyclobutane pyrimidine dimers (CPDs) by ultraviolet‐B radiation (UV‐B, 280–315 nm) and repair mechanisms were studied in the lichen Cladonia arbuscula ssp. mitis exposed to different temperatures and water status conditions. In addition, the development and repair of CPDs were studied in relation to the different developmental stages of the lichen thallus podetial branches. Air‐dried lichen thalli exposed to UV‐B radiation combined with relatively high visible light (HL, 800 μmol m?2 s?1; 400–700 nm) for 7 days showed a progressive increase of CPDs with no substantial repair, although HL was present during and after irradiation with UV‐B. Fully hydrated lichen thalli, that had not been previously exposed to UV‐B radiation for 7 days, were given short‐term UV‐B radiation treatment at 25°C, and accumulated DNA lesions in the form of CPDs, with repair occurring when they were exposed to photoreactivating conditions (2 h of 300 μmol m?2 s?1, 400–700 nm). A different pattern was observed when fully hydrated thalli were exposed to short‐term UV‐B radiation at 2°C, in comparison with exposure at 25°C. High levels of CPDs were induced at 2°C under UV‐B irradiation, without significant repair under subsequent photoreactivating light. Likewise, when PAR (300 μmol m?2 s?1) and UV‐B radiation were given simultaneously, the CPD levels were not lowered. Throughout all experiments the youngest, less differentiated parts of the lichen thallus – namely ‘tips’, according to our arbitrary subdivision – were the parts showing the highest levels of CPD accumulation and the lowest levels of repair in comparison with the older thallus tissue (‘stems’). Thus the experiments showed that Cladonia arbuscula ssp. mitis is sensitive to UV‐B irradiation in the air‐dried state and is not able to completely repair the damage caused by the radiation. Furthermore, temperature plays a role in the DNA damage repairing capacity of this lichen, since even when fully hydrated, C. arbuscula ssp. mitis did not repair DNA damage at the low temperatures.  相似文献   

3.
The economic red alga, Gracilaria lemaneiformis Bory, was grown at different depths in the coastal waters of the South China Sea, and its growth, pigments, ultra-violet (UV)-absorbing compounds and agar yield were investigated in order to see the impacts of depth change. Gracilaria lemaneiformis grew slower at greater depths in March, while the highest relative growth rate (RGR) was found at about 1.0 m depth in April, about 9% higher than that at surface water (0.5 m below the surface). The RGR increased with the increasing daily photosynthetically active radiation (PAR) dose received by the thalli at different depths. The contents of phycoerythrin and chlorophyll a increased, while that of UV-absorbing compounds (UVAC, absorption peak at 325 nm) decreased with increased depth. The highest levels of the UVAC in the thalli grown in surface seawater played a protective role against solar UV radiation (280–400 nm). The content of UVAC declined at deeper depths and under indoor low PAR. The agar yield of the thalli increased with the increasing depths, with the highest content found at 3.5 m depth.  相似文献   

4.
The impact of exclusion of solar UV-B (280–320 nm) and UV-A+B (280–400 nm) radiation on the root nodules was studied in soybean(Glycine max var. MACS 330). Soybean plants were grown in the tropical region of Indore (Latitude-22.4°N), India under field conditions in metal cages covered with polyester exclusion filters that specifically cut off UV-B (<320 nm) and UV-A+B (<400 nm) radiation; control plants were grown under ambient solar radiation. Leghemoglobin content was analyzed in the root nodules on the 50th day after emergence of seedlings. Exclusion of UV radiations significantly enhanced the leghemoglobin content in the nodules on fresh weight basis; 25% and 45% higher amount of leghemoglobin were present in the nodules after the exclusion of UV-B and UV-A+B radiation respectively. Analysis by native and SDS-PAGE showed high intense bands of leghemoglobin after the exclusion of UV-A+B as compared to control. Exclusion of UV radiation also enhanced the growth of roots as well as aerial parts of the plants. UV Exclusion increased nodulation by increase in the number and size of nodules. The results are discussed in the light of advantage of exclusion for enhancing protein/nitrogen content in the plants.  相似文献   

5.
Epiphytes can have a considerable effect on Gracilaria production, and Ulva is one of the commonest algal species identified as an epiphyte, reaching loads of 60% (g of epiphytes per g of Gracilaria) in the intertidal cultures of southern Chile. This study evaluates the relative importance of light reduction, addition of weight to the host thalli and nutrient depletion, as mechanisms determining the interaction effects of Ulva epiphytes on Gracilaria cultivation. Using field experiments undertaken during the main Gracilaria growth season (spring), we evaluate the mechanisms of epiphyte-host algae interaction by manipulating artificial epiphytes. The results indicate that Ulva can significantly depress Gracilaria biomass production and that the addition of weight to the host algae and the consequent dislodgement increase, appear to be the main mechanisms involved in the Ulva-Gracilaria interaction. However, the light reduction caused by the epiphytes can also partially explain the reduction in Gracilaria production. Nutrients depletion would not appear to fully account for the detrimental effects of Ulva over Gracilaria in intertidal farming areas of southern Chile.  相似文献   

6.
Sunlight penetration through the water column is controlled by the amount and kind of materials dissolved and suspended in the water. Understanding UV penetration in its complexity is essential for the prediction of the impact of UV radiation on aquatic ecosystems. However, only limited data are available on the penetration of UVR into shallow waters rich in inorganic suspended solids and chromophoric dissolved organic matter (CDOM). The same is true for the specific attenuation coefficients of light-absorbing components at the UV waveband. This study analyses the role of CDOM, algal-free suspended solids and algae in the formation of underwater UVR and PAR climate in 30 water bodies from clear gravel pit lakes trough the shallow Lake Balaton to turbid soda pans. Irradiance-depth profiles were obtained at 305, 313, 320 nm (UV-B), 340, 380, 395 nm (UV-A) and 400–700 nm (PAR) with a Biospherical PUV-2500 radiometer. Vertical attenuation coefficients (K d) were calculated. Water samples were taken for the laboratory measurement of the concentration of light-absorbing components: algae as chlorophyll a (CHL), chromophoric dissolved organic matter as colour (CDOM), and algal-free suspended solids (TSS-Alg) parallel with the in situ light measurements. Specific attenuation coefficient values were calculated by multiple regression analysis (n = 140). The obtained specific UV attenuation coefficient values of CHL, CDOM and TSS-Alg made it possible to establish light attenuation at different wavelengths based on the knowledge of the concentration of these light-absorbing components.  相似文献   

7.
Seaweed production is a reality in Chile. More than ten species are commercially used to produce phycocolloids, fertilizers, plant growth control products, human food or animal fodder and feed additives. These multiple uses of algae offer a number of possibilities for coupling this activity to salmon, abalone and filter-feeder farming. In this context, different experiments carried out in Chile have demonstrated that Gracilaria chilensis and Macrocystis pyrifera have great potential in the development of an integrated aquaculture strategy. The present Integrated Multi-Trophic Aquaculture (IMTA) approach study showed that Gracilaria can be cultured best at 1 m depth whereas Macrocystis has an especially good growth response at 3 m depth. Both species use available nitrogen efficiently. On the other hand, high intensities of solar radiation (UV and PAR) can be critical at low depths of cultivation, and our results indicate that both species show photosynthetic susceptibility mainly at noon during the summer. The demand of Macrocystis for abalone feeding is increasing, thus improving the opportunity for developing an integrated nutrient waste recycling activity in Chile. Although Gracilaria shows a higher nitrogen uptake capacity than Macrocystis, its market value does not yet allow a massive commercial scaling.  相似文献   

8.
Using a Biolistic PDS 1000/He system, healthy thalli of Gracilaria changii were bombarded with gold particles coated with plasmid DNA containing the lacZ reporter gene. Transient expression of lacZ was observed in bombarded thalli under the rupture-disc pressures of 4482, 6206, 7584 and 8963 KPa, two days after bombardment. Although G. changii exhibits a slight blue background, positive expression and the background colour can be clearly differentiated. The results indicate that lacZ could be a useful reporter gene and that SV40 promoter could be an effective promoter for Gracilaria transformation.  相似文献   

9.
Phenotypic variability and mixing of material due to massive cultivation for commercial purposes has contributed to the taxonomic confusion ofGracilaria in Chile. At least four species with cylindrical thalli and similar morphology have been recorded. However, since establishment ofG. chilensis, most of the collected thalli have been attributed to this species despite the lack of diagnostic features. In an attempt to resolve whetherGracilaria from 3 localities where it grows in natural and artificial populations belongs to the same species, gametophytic samples were compared by applying RAPD-PCR to their total DNA. This was analysed using 25 different 10-mer primers from which 21 revealed polymorphism within and between populations. Similarity matrices and cluster analyses were performed based on the presence/absence of bands representing fragments of DNA generated by random amplification. Similarity values between two of the populations were equivalent to those detected within a third, indicating the mixing of genetic material due to transplant between the two former localities. Similarities between samples of ChileanGracilaria andG. tenuistipitata from Sweden are considerably lower (0.45–0.53) than those between populations from Chile (0.74–0.88), confirming the existence of a single specific taxon,G. chilensis, in these three localities.  相似文献   

10.
Cell and chloroplast structural changes in palisade cells from mature leaves of Brassica napus L. cv. Paroll were quantified following exposure of plants to enhanced ultraviolet-B (280–320 nm; 13 kJ m?2 day?1 biologically effective UV-B) radiation at two different levels of photosynthetically active radiation (PAR, 400–700 nm; 200 and 700 μmol m?2 s?1). Short-term changes in leaf ultrastructure after 30 min and longer term changes after one day and one week were analyzed using stereological techniques incorporating light and electron microscopy and mathematical reconstruction of a mean cell for each sample. Ultraviolet-B together with either relatively high or low PAR resulted in cell structural changes resembling those typical of plants under shade conditions, with the most marked response occurring after 30 min of UV-B radiation. The ultrastructural changes at the cellular level were generally similar in both the relatively high and low PAR plus UV-B radiation treatments. The surface areas of all three thylakoid types, the appressed, non-appressed and margin thylakoids increased in the palisade tissue under supplemental UV-B irradiation. Although the appressed and non-appressed thylakoids increased in surface area, they did not increase equally, leaving open the possibility that the two thylakoid types have independent regulatory systems or different sensitivity to UV-B radiation. Increased thylakoid packing (mm2 thylakoid membrane per mm2 leaf surface) in UV-B-exposed plants may increase the statistical probability of photon interception. An increased level of UV-absorbing pigments after one week of supplemental UV-B radiation did not prevent or significantly ameliorate UV effects. Our data supported the assumption that UV-B radiation may have a regulatory role besides damaging effects and that an increased UV-B environment will likely increase this regulatory influence of UV-B radiation.  相似文献   

11.
Fertile Saccharina latissima sporophytes, collected in the Kongsfjorden, Ny‐Ålesund, Spitsbergen, Norway (78°56.87′ N, 11°51.64′ E) were investigated in relation to its sensitivity to experimentally enhanced ultraviolet radiation : photosynthetically active radiation (UVR : PAR) ratios. Irradiance of UVR were 4.30 W m?2 of UV‐A (320–400 nm) and 0.40 W m?2 of UV‐B (280–320 nm), and PAR (400–700 nm) was ~4.30 W m?2 (=20 µmol photons m?2 s?1). Excised soral (sporogenic) and non‐soral (vegetative) tissues were separately irradiated for 16 h at 7°C. Transmission electron microscopy showed abundant occurrence of physodes, electron dense particles (~300–600 nm) in the sorus. Paraphysis cells, with partly crystalline content, large mitochondria and abundant golgi bodies were towering over the sporangia. In soral tissue, cells were not visibly altered by the PAR + UVR irradiation. The chloroplasts, flagella and nucleus of unreleased meiospores inside the sporangial parent cells were visibly intact. Severe changes in the chloroplast structure of vegetative tissue occurred after PAR + UVR irradiation. These changes included wrinkling and dilatation of the thylakoid membranes, and appearance of electron translucent areas inside the chloroplasts. In vegetative cells exposed to PAR + UVR, the total amount of physodes, was slightly higher as in cells exposed to PAR only. Initial values of optimum quantum yield of photosystem II (Fv/Fm) were 0.743 ± 0.04 in non‐soral and 0.633 ± 0.04 in soral tissue. Vegetative tissue was observed to be more sensitive to radiant exposure of PAR and PAR + UVR compared to reproductive tissue. Under PAR, a 20% reduction in Fv/Fm was observed in non‐soral compared to no reduction in soral tissue, whereas under PAR + UVR, 60% and 33% reduction in Fv/Fm was observed in non‐soral and soral tissues, respectively. This can be attributed to the corresponding three times higher antiradical power (ARP) capacity in soral compared to non‐soral tissue.  相似文献   

12.
  • 1 This laboratory study examined the effect of a gradient of UV‐B radiation (280–320 nm) on photosynthesis and food quality of periphyton, the trophic base of many freshwater benthic communities. Four irradiances of UV‐B (0, 0.6, 1.2, and 2.3 W m‐2) were delivered by UV‐B lamps (313 nm peak irradiance) over a 13‐day period in the first experiment and over a 4‐h period in the second experiment. These irradiances were roughly equivalent to 0, 1, 2, and 4 times the ambient biologically effective (DNA) midsummer, midday UV‐B irradiance in Tennessee.
  • 2 Rates of photosynthesis and photosynthetic pigments were significantly reduced by irradiances greater than ambient during the 13‐day experiment, suggesting that food supply rates to grazers would be depressed by increases in current UV‐B levels. Effects on community structure were minor, but mean diatom cell size decreased at higher UV‐B irradiances.
  • 3 Irradiated periphyton was fed in surplus to juvenile snails (Physella gyrina) in the first experiment as a bioassay for food quality. Snail growth was the same on all four diets, suggesting that UV‐B did not affect food quality. Nitrogen and phosphorus content of the periphyton were not affected by UV‐B, either.
  • 4 Photosynthesis by low‐biomass periphyton in the second experiment was significantly depressed by irradiances above ambient after only 4 h. Photosynthesis by the high biomass periphyton was not significantly affected by UV‐B, suggesting that self‐shading reduced UV‐B effects.
  相似文献   

13.
The intertidal red alga Porphyra haitanensis Chang et Zheng is episodically desiccated and exposed to high levels of solar radiation at low tide during emersion. However, little has been documented on the relationship between the stresses during desiccation and related chemical compounds. We found that P. haitanensis thalli, when desiccated under indoor (artificial radiation) or outdoor (solar radiation) conditions, with or without UV radiation (UVR: 280–400 nm), contained significantly higher concentrations of UV-absorbing compounds (peak at 336 nm) than those maintained submerged (without desiccation). Solar UVR had no effect on the content of UV-absorbing compounds. Even though the concentration of these compounds decreased with time in all treatments, a slower decrease was observed in the desiccated samples. The samples with higher levels of UV-absorbing compounds showed higher photochemical efficiency of photosystem II (PS II) during the exposure or subsequent recovering process than samples with low concentration of UV-absorbing compounds, reflecting their protective role. The concentration of these compounds varied in different parts of the thallus, with the middle and marginal parts containing 60–80% more UV-absorbing compounds than the basal parts in both female and male plants. In addition, the marginal parts of male thalli contained more UV-absorbing compounds than the corresponding parts of female thalli. Our data suggest that desiccation plays a key role in this alga to maintain high concentration of UV-absorbing compounds, and that this might provide a beneficial advantage to compete in the intertidal zone where the organism is normally exposed to high levels of UVR.  相似文献   

14.
The reproductive structures of Gracilaria foliifera (Forsk.) Børg. from England and an unnamed species of Gracilaria from Nova Scotia were studied by light microscopy. These two entities are distinguishable on the basis of the type of gonimoblast tissue in their mature cystocarps. This, together with other evidence, suggests that these are separate taxa.  相似文献   

15.
Recent reduction in the ozone shield due to manufactured chlorofluorocarbons raised considerable interest in the ecological and physiological consequences of UV‐B radiation (λ=280–315 nm) in macroalgae. However, early life stages of macroalgae have received little attention in regard to their UV‐B sensitivity and UV‐B defensive mechanisms. Germination of UV‐B irradiated spores of the intertidal green alga Ulva pertusa Kjellman was significantly lower than in unexposed controls, and the degree of reduction correlated with the UV doses. After exposure to moderate levels of UV‐B irradiation, subsequent exposure to visible light caused differential germination in an irradiance‐ and wavelength‐dependent manner. Significantly higher germination was found at higher photon irradiances and in blue light compared with white and red light. The action spectrum for photoreactivation of germination in UV‐B irradiated U. pertusa spores shows a major peak at 435 nm with a smaller but significant peak at 385 nm. When exposed to December sunlight, the germination percentage of U. pertusa spores exposed to 1 h of solar radiation reached 100% regardless of the irradiation treatment conditions. After a 2‐h exposure to sunlight, however, there was complete inhibition of germination in PAR+UV‐A+UV‐B in contrast to 100% germination in PAR or PAR+UV‐A. In addition to mat‐forming characteristics that would act as a selective UV‐B filter for settled spores under the parental canopy, light‐driven repair of germination after UV‐B exposure could explain successful continuation of U. pertusa spore germination in intertidal settings possibly affected by intense solar UV‐B radiation.  相似文献   

16.
Concentrations of chlorophyll a/freshweight (Chl a FW) and photosynthetic pigments/chlorophyll a were studied during one growing season in the current year's (CYN) and last year's needles (LYN) from Norway spruce (Picea abies (L.) Karst.) grown under natural or close‐to‐natural climate. Climate regimes differed in photosynthetic active radiation (PAR), temperature (T) and UV‐B radiation. Pigments were not affected by UV‐B but most of the differences between climate regimes, and also seasonal variations within climate regimes, could be related to PAR and T. Generally, two types of response to climate were observed: firstly, pigments reacted primarily to PAR without marked sensitivity to T and exhibited slow response times (> 30 d), and, secondly, pigments were affected by the combined action of PAR and T and responded faster than 20 d. The Chl a FW and chlorophyll b/chloprophyll a ratio exhibited slow‐type response in CYN and fast‐type response in LYN. Higher amplitudes in CYN than in LYN were observed for the latter two parameters, which are known to be associated with levels of pigment–protein complexes. It is suggested that slow response in CYN ensures that the high investments in proteins in these needles occur only in response to longer‐lasting climate episodes.  相似文献   

17.
Solar ultraviolet radiation (UVR, 280–400 nm) is known to affect macroalgal physiology negatively, while nutrient availability may affect UV‐absorbing compounds (UVACs) and sensitivity to UVR. However, little is known about the interactive effects of UVR and nitrate availability on macroalgal growth and photosynthesis. We investigated the growth and photosynthesis of the red alga Gracilaria lemaneiformis (Bory) Grev. at different levels of nitrate (natural or enriched nitrate levels of 41 or 300 and 600 μM) under different solar radiation treatments with or without UVR. Nitrate‐enrichment enhanced the growth, resulted in higher concentrations of UVACs, and led to negligible photoinhibition of photosynthesis even at noon in the presence of UVR. Net photosynthesis during the noon period was severely inhibited by both ultraviolet‐A radiation (UVA) and ultraviolet‐B radiation (UVB) in the thalli grown in seawater without enriched nitrate. The absorptivity of UVACs changed in response to changes in the PAR dose when the thalli were shifted back and forth from solar radiation to indoor low light, and exposure to UVR significantly induced the synthesis of UVACs. The thalli exposed to PAR alone exhibited higher growth rates than those that received PAR + UVA or PAR + UVA + UVB at the ambient or enriched nitrate concentrations. UVR inhibited growth approximately five times as much as it inhibited photosynthesis within a range of 60–120 μg UVACs · g?1 (fwt) when the thalli were grown under nitrate‐enriched conditions. Such differential inhibition implies that other metabolic processes are more sensitive to solar UVR than photosynthesis.  相似文献   

18.
The chlorophyte Ulva is perceived as a simple and uniform algal form, with little functional differentiation within a thallus. We compared morphology, pigmentation, photosynthesis, growth, reproduction, and UV‐B sensitivity between different thallus regions of Ulva pertusa Kjellman. Thallus thickness and cell size were significantly greater, whereas cell number was less in the basal region than in other regions. Photosynthetic pigment contents were lowest in the basal region and increased toward the marginal region. Photosynthetic capacity and photosynthetic efficiency normalized to fresh weight, area, volume, and cell number showed a progressive increase from the basal to marginal parts; however, on a chl basis those values were equal regardless of thallus part. Values of light saturation point were not statistically different between regions. Growth rates increased from marginal to basal and to middle parts of the thallus, whereas sporulation was highest in marginal (100%) followed by middle (30%) and basal parts (0%). Daily observation over 9 days showed that 56% of the basal cells divided once and did not produce spores, whereas every marginal cell went through its first division and 89% of the primary daughter cells also divided, resulting in 100% sporulation. A 7‐day treatment with PAR and PAR + UV‐A caused a significant decrease in the effective quantum yield of all thallus regions, followed by a recovery toward the initial values, whereas PAR + UV‐A + UV‐B irradiation led to greater photoinhibition and less recovery. Marked differences in the UV‐B sensitivity were observed, with marginal parts being more sensitive and basal parts most resistant.  相似文献   

19.
The biomass variation and the reproduction of the natural Gracilaria gracilis bed in Bahía Bustamante (Patagonia, Argentina) were analyzed for 2 years, with the aim of determining the present situation of the population for an updated status overview; establishing the relevant features of the temporal variation in both biomass and reproductive states in relation to environmental factors, epiphytes and associated algae; and assessing carpospore availability for future spore-culture development. Field measurements and sampling were performed monthly between March 2006 and February 2008. In both years, G. gracilis biomass presented marked seasonal variations, with a minimum in winter and a maximum in late spring and in summer. During both years, coexistence of the three life-cycle phases was found, with dominance of tetrasporophytes. Two data sets from individuals originated from sexual reproduction (tetraspores and carpospores) and from asexual reproduction by thallus fragmentation were analyzed separately. In the fragmentation fraction, tetrasporophyte frequencies remained higher than those for gametophytes. However, in the spore-originated fraction, a generation ratio close to 0.5 was observed. Female gametophytes bearing cystocarps were always present, with a maximum in summer and autumn. Biological data were related to environmental factors by means of canonical correspondence analysis (CCA). The first year was characterized by higher biomass values of G. gracilis and Undaria pinnatifida, lower epiphytism, larger Gracilaria thalli and greater proportion of mature tetrasporophytes and gametophytes. The second year was characterized by a high proportion of Gracilaria vegetative thalli and high epiphyte density. The best time to obtain spores from cystocarpic thalli would be in summer and early autumn.  相似文献   

20.
The presence of gigartinine has been used previously as a taxonomic marker for the positive identification in Manukau Harbour (west coast, Auckland) of Gracilaria sp., which has apparently been introduced to New Zealand waters and is easily confused morphologically with the native species, G. chilensis. Thirty two estuarine/harbour populations of Gracilaria in New Zealand were screened for the presence of gigartinine to further test the utility of gigartinine as a reliable species marker. DNA fingerprinting was used to confirm the identity of a subset of the specimens surveyed. Using genetic rather than chemical characterisation, it was discovered that Gracilaria sp. is also present in Orakei Basin (east coast, Auckland). Although a sample from the wild did not have the anticipated gigartinine content, tank cultivation of thalli from this population in an artificially elevated nitrogen environment allowed the plant to accumulate nitrogen as gigartinine. This confirmed the unusual ability of this species of Gracilaria to store nitrogen in this form, unlike the widespread, morphologically similar, G. chilensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号