首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Parasites and mutualists can wield great influence on the fitness of social organisms, yet the effect that the host’s social structure has on the evolution of parasites, commensals, and mutualists (collectively referred to here as symbionts) is poorly known. Evolutionary theory suggests that host social structure may select for more cooperative symbiont strains in comparison to symbionts of solitary hosts. We compared the productivity of one social and one solitary bee species (Halictus ligatus and Augochlora pura) in the family Halictidae with and without the presence of their nematode symbionts (Acrostichus halicti and Acrostichus puri, respectively). We measured the number of offspring produced, the number of cells provisioned, and nesting activity (for Au. pura) to test the hypothesis that symbionts specific to a social host exhibit greater cooperation than symbionts specific to a solitary host. Infected and uninfected nests of both species did not differ in any fitness estimates indicating that: (1) Acrostichus species are commensals, or at least lack large fitness effects on their hosts, and (2) the transition from association with a solitary host to association with a social host that lives in small colonies does not have detectable effects on the evolution of conflict and cooperation in this system. This is the first comparative study to test the idea that host social structure may influence the evolution of symbionts; future work should compare closely related mutualists and parasites of more advanced eusocial insects to mutualists and parasites of solitary insects.  相似文献   

2.
Mutualisms often involve reciprocal adaptations of both partners. Acacia ant-plants defended by symbiotic Pseudomyrmex ant mutualists secrete sucrose-free extrafloral nectar, which is unattractive to generalists. We aimed to investigate whether this extrafloral nectar can also exclude exploiters, that is nondefending ant species. Mutualist workers discriminated against sucrose whereas exploiters and generalists with no affinity toward Acacia myrmecophytes preferred sucrose, because mutualist workers lacked the sucrose-cleaving enzyme invertase, which is present in workers of the other two groups. Sucrose uptake induced invertase activity in workers of parasites and generalists, but not mutualists, and in larvae of all species: the mutualists loose invertase during their ontogeny. This reduced metabolic capacity ties the mutualists to their plant hosts, but it does not completely prevent the mutualism from exploitation. We therefore investigated whether the exploiters studied here are cheaters (i.e., have evolved from former mutualists) or parasites (exploiters with no mutualistic ancestor). A molecular phylogeny demonstrates that the exploiter species did not evolve from former mutualists, and no evidence for cheaters was found. We conclude that being specialized to their partner can prevent mutualists from becoming cheaters, whereas other mechanisms are required to stabilize a mutualism against the exploitation by parasites.  相似文献   

3.
Antagonistic or mutualistic interactions between insects and fungi are well-known, and the mutualistic interactions of fungus-growing ants, fungus-growing termites, and fungus-gardening beetles with their respective fungal mutualists are model examples of coevolution. However, our understanding of coevolutionary interactions between insects and fungi has been based on a few model systems. Fungal mimicry of termite eggs is one of the most striking evolutionary consequences of insect–fungus associations. This novel termite–fungus interaction is a good model system to compare with the relatively well-studied systems of fungus-growing ants and termites because termite egg-mimicking fungi are protected in the nests of social insects, as are fungi cultivated by fungus-growing ants and termites. Recently, among systems of fungus-growing ants and termites, much attention has been focused on common factors including monoculture system for the ultimate evolutionary stability of mutualism. We examined the genetic diversity of termite egg-mimicking fungi within host termite nests. RFLP analysis demonstrated that termite nests were often infected by multiple strains of termite egg-mimicking fungi, in contrast to single-strain monocultures in fungus combs of fungus-growing ants and termites. Additionally, phylogenetic analyses indicated the existence of a free-living stage of the termite egg-mimicking fungus as well as frequent long-distance gene flow by spores and subsequent horizontal transmission. Comparisons of these results with previous studies of fungus-growing ants and termites suggest that the level of genetic diversity of fungal symbionts within social insect nests may be important in shaping the outcome of the coevolutionary interaction, despite the fact that the mechanism for achieving genetic diversity varies with the evolutionary histories of the component species.  相似文献   

4.
Female brood parasites are recognized as threats to reproductive success by many host species. Male brood parasites may accompany females while they search for nests to parasitize and males depredate nests throughout the nesting cycle. Hence, selection may also favour recognition of males. We examined whether two common host species perceive male brown-headed cowbirds ( Molothrus ater ) as brood parasites, as nest predators, or neither. We quantified visits of male cowbirds to nests of yellow warblers ( Dendroica petechia ) and red-winged blackbirds ( Ageliaus phoeniceus ) to assess the frequency with which these host species interact with male cowbirds. Males were observed near nests during hosts' laying and incubating stages, although less frequently than female cowbirds. No visits by cowbirds occurred while parents cared for nestlings. We then presented models of male and female cowbirds plus a non-threatening control to yellow warblers and red-winged blackbirds during laying and nestling periods. If hosts perceive males and females similarly, they should respond more intensely to the cowbird models during the laying period, when nests are most likely to be parasitized. Both species responded similarly to male and female cowbird models during laying, which suggests that hosts view cowbirds of both sexes as threats. The responses of yellow warblers with nestlings to male cowbirds were strongly influenced by the order of model presentation. Warblers first presented with the male cowbird gave much reduced anti-parasite responses than those that first interacted with the female then the male cowbird. These results suggest that yellow warblers recognized male vs. female cowbirds, but that discrimination was not expressed during laying. By contrast, red-winged blackbirds did not discriminate between male and female cowbirds at either nesting stage.  相似文献   

5.
Previous research on social parasitism has largely ignored allodapine social parasites, which is surprising given the huge potential of these bees to provide a better understanding of social parasitism. Macrogalea berentyensis, a species that was previously suggested to be a social parasite, was collected in nests of M. ellioti, and also in nests consisting of only M. berentyensis. These f'mdings, along with morphological and phylogenetic evidence, show that this species is a facultative social parasite. In the independently living M. berentyensis nests, brood were present that had been reared to an advanced stage, suggesting that: (i) these parasites may be effective at foraging and caring for their brood; or (ii) these nests may be colonies where all the hosts had died, and these parasites had yet to disperse. Macrogalea berentyensis is the closest relative of the facultative social parasite, M. antanosy, and both these species represent the most recent evolutionary origin of social parasitism within the allodapines. Further behavioral research on both these parasitic species would therefore have important implications for the understanding of the evolution of social parasitism.  相似文献   

6.
Ecological constraints such as resource limitation, unfavourable weather conditions, and parasite pressure have long been considered some of the most important selective pressures for the evolution of sociality. In the present study, we assess the fitness consequences of these three ecological factors on reproductive success of solitary nests and social colonies in the socially polymorphic small carpenter bee, Ceratina australensis, based on 982 nests collected over four reproductive periods. Nest site limitation was predicted to decrease opportunities for independent nest initiation and increase the frequency of social nesting. Nest sites were not limiting in this species and the frequency of social nesting was consistent across the four brood‐rearing periods studied. Unfavourable weather was predicted to lower the frequency of female dispersal from their natal nests and to limit the brood‐rearing season; this would increase the frequency and fitness of social colonies. Daily temperature and precipitation accumulation varied between seasons but were not correlated with reproductive success in this bee. Increased parasite pressure is predicted to increase the frequency and fitness of social colonies because solitary bees must leave the nest unattended during foraging bouts and are less able to defend the nest against parasites. Severe parasitism by a chalcid wasp (Eurytoma sp.) resulted in low reproductive success and total nest failure in solitary nests. Social colonies had higher reproductive success and were never extirpated by parasites. The high frequency of solitary nests suggests that this is the optimal strategy. However, social colonies have a selective advantage over solitary nesting females during periods of extreme parasite pressure, and we suggest that social nesting represents a form of bet‐hedging against unpredictable fluctuations in parasite number. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 57–67.  相似文献   

7.
Parasitized nestlings might be expected to increase begging effort to obtain additional resources to compensate for those sequestered by their parasites. However, begging is costly and chicks harbouring parasites may find it more difficult to attain high begging levels. Consequently, we predicted that, for the same level of nutritional need, nestlings that are parasitized will invest less in begging than those that are not parasitized. We tested this prediction by measuring begging in Pied Flycatcher Ficedula hypoleuca nestlings parasitized with haematophagous mites Dermanyssus gallinoides and Dermanyssus gallinae and blowfly larvae Protocalliphora azurea, and subjected to different levels of food deprivation in order to control for short‐term nutritional need. Nestlings from nests with ectoparasites spent less time begging than those from nests without parasites, especially when very hungry, although there was no association with latency to beg or begging intensity. Our results suggest that time invested in begging may indicate not only the level of need, but also nestling parasitism status.  相似文献   

8.
Mutualists have been suggested to play an important role in the assembly of many plant and animal communities, but it is not clear how this depends on environmental factors. Do, for instance, natural disturbances increase or decrease the role of mutualism? We focused on entire guilds of mutualists, studying seed‐dispersing ants and ant‐dispersed plants along gradients of inundation disturbances. We first studied how abundance and richness of the mutualists, relative to non‐mutualists, change along 35 small‐scale gradients of inundation disturbances. We found that at disturbed sites, mutualistic plant species, those that reproduce by seeds dispersed by ants, increased in abundance and in consequences in richness, relative to other herbaceous plants. In contrast, we found that among the epigeic arthropods the abundance of mutualists declined, even more so than other arthropods. Correspondingly, distributions of plant and animal mutualists became increasingly discordant at disturbed sites: most plant mutualists were spatially separated from most animal mutualists. We finally found that high abundances of plant mutualists did not translate into a high nutrition service rendered to ants: at disturbed sites, many of the plants of ant‐dispersed species did not produce seeds, which coincided with a decline in seed dispersal by ants and a changing searching behavior of the ants. Overall, the small‐scale natural disturbances we studied were correlated to a major change in the assembly of mutualist guilds. However, the correlation was often opposite between interacting plant and animal mutualist guilds and may thus reduce the potential interaction between them.  相似文献   

9.
Ant microgynes are miniaturized queen forms found together with normal queens (macrogynes) in species occurring across the ant phylogeny. Their role is not yet fully understood: in some cases, they seem to be nonparasitic alternative reproductive morphs, in others incipient social parasites, and thus potential models for studying the evolution of social parasitism. Whether they are regarded as parasitic or not has traditionally been based on genetic differentiation from syntopic macrogynes and/or the queen/worker ratio of their offspring rather than measuring fitness traits. We confirmed previously reported genetic differentiation between microgynes and macrogynes of Myrmica rubra in a population studied for the first time. Further, we measured virulence and infectivity of M. rubra microgynes in a controlled laboratory experiment. Nests headed only by macrogynes (controls), only by microgynes, and naturally and artificially mixed nests were kept under identical conditions. We found reduction in worker numbers of both naturally and artificially mixed macrogyne/microgyne nests compared with controls, and strong reduction but also surprising variation in fitness of nests headed only by microgynes. Microgyne nests produced workers, males and microgynes. Microgynes did not themselves reproduce in artificially mixed nests, but reproduced most in naturally mixed nests that had lost their macrogyne queen. This, together with higher mortality of field‐collected macrogyne queens from naturally infested colonies and greater estimated relative age of macrogyne queens in naturally infected nests, suggests that they preferentially exploit older host colonies. We conclude that M. rubra microgynes are intraspecific social parasites specialized on exploiting old host colonies.  相似文献   

10.
A longstanding paradigm predicts that microbial parasites and mutualists exhibit disparate evolutionary patterns. Parasites are predicted to promote arms races with hosts, rapid evolution and sexual recombination. By contrast, mutualists have been linked with beneficial coadaptation, evolutionary stasis and asexuality. In this review we discuss the recent surge of molecular data on microbes that are being used to test and reshape these ideas. New analyses reveal that beneficial microbes often share mechanisms of infection and defense with parasites, and can also exhibit rapid evolution and extensive genetic exchange. To explain these patterns, new paradigms must take into account the varied population biology of beneficial microbes, their potential conflicts with hosts, and the mosaic nature of genome evolution that requires locus-based tests to analyze the genetics of host adaptation.  相似文献   

11.
In this review, David Bermudes and Keith Joiner discuss the interrelationship between parasitism and mutualism and examine the parallel mechanisms used by parasites and mutualists to access and persist within the intracellular environment. By drawing analogies with mutualistic associations, they suggest mechanisms by which some parasites may ultimately benefit their hosts. They further speculate that some hosts may even become dependent upon their parasites.  相似文献   

12.
Eurasian Oystercatchers Haematopus ostralegus are infested with a wide range of gut parasites, but experimental evidence of their effects on host fitness is scant. We investigated prevalence of parasites, and experimentally tested the effects of gut parasites on chick survival and growth. One hundred and fifty-nine hatchlings from 66 nests were treated with a single dose anthelminthic medicine (0.5 mL Spectril + 0.0025 mL Ivomec) and compared with a sham-treated control group of 163 hatchlings from 66 nests. Unexpectedly, chicks treated with the anthelminthic drug survived less well than control chicks. Fledglings from the treated group were significantly less infected with gut parasites than untreated fledglings, although they were of similar body mass. One possible explanation for these findings is that the treatment interferes with the development of the immune system in the hatchlings. This might have caused mass mortality of treated hatchlings after the drug ceased to work and the treated chicks became susceptible to infections for the first time. Furthermore, all chicks and adults from both saltmarsh and adjacent freshwater habitat appeared free from blood parasites. Thus, in the Eurasian Oystercatcher, we found no support for the hypothesis, based on between-species comparisons, that the presence of blood parasites is related to the saltiness of the environment.  相似文献   

13.
1. The performance of ant colonies depends on different factors such as nest site, colony structure or the presence of pathogens and social parasites. Myrmica ants host various types of social parasites, including the larvae of Maculinea butterflies and Microdonmyrmicae (Schönrogge) hoverfly. How these social parasites affect host colony performance is still unexplored. 2. It was examined how the presence of Maculinea teleius Bergsträsser, Maculinea alcon (Denis & Schiffermüller), and M. myrmicae larvae, representing different feeding and growth strategies inside host colonies, is associated with worker survival, the number of foragers, and colony productivity parameters such as growth and reproduction. 3. It was found that the presence of social parasites is negatively associated with total colony production and the production of ant larvae and gynes. Male production was lower only in nests infested by M. teleius, whereas the number of worker pupae was significantly higher in all types of infested colonies than in uninfested colonies. Laboratory observations indicated that nests infested by Maculinea larvae are characterised by a higher number of foragers compared to uninfested nests but we did not find differences in worker survival among nest types. 4. The observed pattern of social parasite influence on colony productivity can be explained by the feeding strategies of parasitic larvae. The most negative effect was found for M. teleius, which feeds on the largest host brood and eliminates a high number of sexual forms. The strong, adverse influence of all studied parasite species on gyne production may result in low queen production in Myrmica populations exposed to these social parasites.  相似文献   

14.
Predators can influence primary producers by generating cascades of effects in ecological webs. These effects are often non‐intuitive, going undetected because they involve many links and different types of species interactions. Particularly, little is understood about how antagonistic (negative) and mutualistic (positive) interactions combine to create cascades. Here, we show that black bears can benefit plants by consuming ants. The ants are mutualists of herbivores and protect herbivores from other arthropod predators. We found that plants near bear‐damaged ant nests had greater reproduction than those near undamaged nests, due to weaker ant protection for herbivores, which allowed herbivore suppression by arthropod predators. Our results highlight the need to integrate mutualisms into trophic cascade theory, which is based primarily on antagonistic relationships. Predators are often conservation targets, and our results suggest that bears and other predators should be managed with the understanding that they can influence primary producers through many paths.  相似文献   

15.
This study examined nest-site choice in a migratory population of pied flycatchers (Ficedula hypoleuca) and sympatric populations of three resident tit species (Parus major, P. caeruleus and P. palustris) in central Sweden. All four species are secondary-cavity nesters which naturally breed in pre-formed tree cavities but readily use artificial nest boxes. We asked whether flycatchers and tits discriminate between nest boxes that: 1. Are ‘empty’; 2. Contain old nests without ectoparasites (fleas Ceratophyllus sp.); or 3. Contain old nests with ectoparasites. We found that pied flycatchers preferred nest boxes containing old nests, regardless of whether these nests held parasites. In contrast, tits did not discriminate between the three types of boxes. Tits may pay a cost for their lack of choosiness: after the breeding season, tit nests contained more fleas than flycatcher nests. Nevertheless, parasites did not affect the choice of a nest site in any of the species studied. We suggest that the migratory flycatchers are in a hurry to start breeding upon arrival and use the presence of an old nest as a shortcut cue to assess nest-site quality. Also, they may save valuable time by copying the choice of previous breeders. Non-migratory tits may have more time to inspect nest sites, but do not seem to use the same cues in nest-site selection as the pied flycatcher.  相似文献   

16.
Parasites that exploit the parental behaviour of several host species may be selected to form distinct host-specific genetic lineages. This process is well documented in bird brood parasites, but not in insect social parasites. Polistes atrimandibularis is the only paper-wasp social parasite known to exploit four host species. It does not form genetically distinct host races according to analyses based on microsatellite loci. Also, there were no size-matching between parasites and host species. Instead, P. atrimandibularis queens seemed to be successful as parasites in this population only when they originated from nests of P. dominulus, the largest species. The other host species are a sink for P. atrimandibularis since adult females emerging from those nests appear too small to usurp colonies themselves. Traits that may help P. atrimandibularis infiltrate multiple species may include its nonaggressive usurpation tactics and its ability to acquire host cuticular hydrocarbon recognition labels.  相似文献   

17.
Reproductive success of brood parasites largely depends on appropriate host selection and, although the use of inadvertent social information emitted by hosts may be of selective advantage for cuckoos, this possibility has rarely been experimentally tested. Here, we manipulated nest size and clutch colouration of magpies (Pica pica), the main host of great spotted cuckoos (Clamator glandarius). These phenotypic traits may potentially reveal information about magpie territory and/or parental quality and could hence influence the cuckoo’s choice of host nests. Experimentally reduced magpie nests suffered higher predation rate, and prevalence of cuckoo parasitism was higher in magpie nests with the densest roofs, which suggests a direct advantage for great spotted cuckoos choosing this type of magpie nest. Colouration of magpie clutches was manipulated by adding one artificial egg (blue or cream colouration) at the beginning of the egg-laying period. We found that host nests holding an experimental cream egg experienced a higher prevalence of cuckoo parasitism than those holding a blue-coloured egg. Results from these two experiments suggest that great spotted cuckoos cue on magpie nest characteristics and the appearance of eggs to decide parasitism, and confirm, for the first time, the ability of cuckoos to distinguish between eggs of different colours within the nest of their hosts. Several hypothetical scenarios explaining these results are discussed.  相似文献   

18.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

19.
To account for differences in occurrence of social behavior in different lineages of bees, Michener (1985) hypothesized that ground nests are more easily located by parasites than are twig nests. In the former case parasites search in two dimensions, while in the latter they search in three-dimensional space. One prediction derived from this hypothesis is that ground nests will have higher rates of parasitism than twig nests. A survey of published reports on rates of cell parasitism for 92 species of nesting bees and wasps (Apoidea) shows no significant differences in mean parasitism rates between these two classes of nests. The analyses were repeated at the generic level (N=44), yielding the same pattern. These data may be biased due to phylogenetic effects. Paired comparisons (n=11 pairs) of related taxa that differ in nest site show that ground-nesting taxa more often have higher rates of parasitism than twig-nesters. The use of artificial trap-nests to study twig-nesters significantly enhances the success rate of parasites. This bias, as well as several other limitations, suggests that experimental studies of the host-searching capabilities of parasites and predators may be more efficacious than such comparative tests.  相似文献   

20.
Host-parasite relatedness may facilitate the evolution of conspecific brood parasitism, but empirical support for this contention remains inconclusive. One reason for this disparity may relate to the diversity of parasitic tactics, a key distinguishing feature being whether the parasite has a nest of her own. Previous work suggests that parasites without nests of their own may be of inferior phenotypic quality, but because of difficulties in identifying these parasitic individuals, little is known about their host selection criteria. We used high-resolution molecular maternity tests to assign parasitic offspring to known parasites with and without their own nests in a population of Barrow's goldeneyes (Bucephala islandica). We determined whether parasite nesting status, host-parasite relatedness and distance between host and parasite nests affected the probability of parasitizing a host and the number of eggs laid per host. We also investigated whether nesting parasites, conventionally nesting females and non-nesting parasites differed regarding their age, structural size, body condition, nesting phenology or total brood size. The probability of engaging in parasitism increased with host-parasite relatedness and spatial proximity to host nests for nesting and non-nesting females alike. However, nesting parasites increased the number of eggs donated with relatedness to the host, while non-nesting parasites did not do so. Non-nesting parasites laid fewer eggs in total, but did not differ by any of the other quality measures from conventional nesters or nesting parasites. Our study provides the first demonstration that nesting and non-nesting parasites from the same population may use different host selection criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号