首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V A Mglinets  V I Ivanov 《Ontogenez》1991,22(6):600-605
Dermatoglyphic traits were examined in 176 inhabitants (39 families) of a village in Arkhangelsk Province. The level of bilateral symmetry and the similarity of the traits were determined in parents, in parents-children pairs, and between children. It is suggested that differences in the level of bilateral symmetry between children and the extent of similarity between children and parents may be used as a criterion of stability or developmental homeostasis in man.  相似文献   

2.
We studied the influence of weightlessness on bilateral symmetry detection during prolonged space flight. Supposing that weightlessness may affect visual information processing by the right and left hemispheres in different ways, we studied this phenomenon with regard for the part of the visual field where to a stimulus was presented (the sight fixation center or the left/right half of this field). We used two types of stimuli, i.e., closed figures (polygons) and distributed figures formed by dots. There was a distinct difference between the central and noncentral presentation of stimuli under terrestrial conditions. When a stimulus was presented noncentrally (on the left or right), a manifest dominance of the horizontal axis was observed. However, there was no substantial difference while stimulating the left and right parts of the visual field. This contradicts the hypothesis on hemispheric specialization of the brain in symmetry detection. When stimuli were presented eccentrically, weightlessness did not notably influence information processing. When they were presented centrally, the predominance of the vertical axis in closed figures tended to weaken under the impact of weightlessness. However, this predominance strengthened when multicomponent figures were presented in space. The different influences of weightlessness on perceiving symmetry of stimuli of different types shows that it may be detected at various levels with different degrees of using nonvisual sensory information.  相似文献   

3.
The automatic detection of bilateral symmetry is a challenging task in computer vision and pattern recognition. This paper presents an approach for the detection of bilateral symmetry in digital single object images. Our method relies on the extraction of Scale Invariant Feature Transform (SIFT) based feature points, which serves as the basis for the ascertainment of the centroid of the object; the latter being the origin under the Cartesian coordinate system to be converted to the polar coordinate system in order to facilitate the selection symmetric coordinate pairs. This is followed by comparing the gradient magnitude and orientation of the corresponding points to evaluate the amount of symmetry exhibited by each pair of points. The experimental results show that our approach draw the symmetry line accurately, provided that the observed centroid point is true.  相似文献   

4.

Background

Studies of symmetric structures have made important contributions to evolutionary biology, for example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers) or rotational symmetry (e.g. sea urchins and many flowers). So far, there is no general method for the shape analysis of these types of symmetry.

Results

We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape variation into a component of symmetric variation among individuals and one or more components of asymmetry. We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that its amount depends on the type of symmetry considered in the analysis.

Conclusions

The framework for analyzing symmetry and asymmetry is suitable for studying structures with any type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more information than structures with bilateral symmetry.  相似文献   

5.
Through recent advances in molecular developmental biology it has become clear that similar morphological traits may sometimes arise from different genetic bases. The molecular developmental biology of floral symmetry has been examined recently in detail and several genes important in controlling floral symmetry in diverse Asteridae have been identified. One of the most important among these is the floral symmetry gene CYCLOIDEA (CYC). We compared GCYC (the Gesneriaceae homolog of CYC) sequences in Gesneriaceae genera with the typical bilaterally symmetric flowers and genera with radial or near radial symmetry. Parsimony, Bayesian and maximum likelihood analyses of GCYC sequences among members of Gesnerioideae are mostly congruent with previous phylogenetic hypotheses, but suggest two unexpected generic positions: Diastema as sister to Gesneria, and Bellonia within Gloxinieae. In order to evaluate whether these results might be artifactual we obtained new gene sequences from chloroplast and nuclear ribosomal regions. These data disagree with GCYC regarding the placement of Diastema, but agree with GCYC regarding Bellonia. We did not find any mutations in GCYC that could explain the shift in symmetry and there were no consistent differences in molecular evolution between taxa with bilaterally or radially symmetric flowers. Likewise taxa with radial floral symmetry are not sister to each other showing that the loss of bilateral symmetry has occurred multiple times in parallel. Further investigations of GCYC expression will be necessary to determine if any of these independent events involved changes in the regulation of GCYC.  相似文献   

6.
The symmetry of the phi 29 head-tail connector is controversial: several studies of two-dimensional arrays of the connector have found a 12-fold symmetry, while a recent study of isolated particles has found a 13-fold symmetry. To investigate whether a polymorphism of the structure might explain these different results, electron microscopy and image analysis were used to study both isolated connectors and particles in hexagonally packed arrays. The hexagonally packed arrays have a P1 symmetry, and the connectors displayed 13 subunits both in the arrays and as isolated single particles. While we do not observe a polymorphism between connectors in two-dimensional arrays and as isolated particles, data show that the connectors can exist with either 12 or 13 subunits. A three-dimensional reconstruction of our 13-fold connector was generated by combining an averaged side-view projection with the known symmetry. The structure of rosettes of the connectors formed in the presence of phi 29 prohead RNA (pRNA) was also examined. These rosettes contain five connectors arranged about a single connector in the center, and this arrangement may reflect an essential role of the pRNA in mediating a symmetry mismatch between either a 12- or 13-fold symmetric connector and a putative fivefold symmetric prohead portal vertex into which the connector fits.  相似文献   

7.
In embryos of the oligochaete annelid Tubifex, most ectodermal tissues are derived from four bilateral pairs of embryonic stem cells called teloblasts (ectoteloblasts N, O, P and Q). Ectoteloblasts are generated on both left and right sides of the embryo through an invariable sequence of cell divisions of a proteloblast, NOPQ, and they are positioned in a mirror symmetric pattern relative to the embryonic midline. This mirror symmetry of ectoteloblast arrangement gives rise to the generation of bilateral symmetry in the ectoderm. Here we review results of our recent experiments on Tubifex tubifex that were designed to gain an insight into the mechanisms underlying the generation of the bilaterally symmetric organization of ectoteloblasts. Cell transplantation experiments have shown that nascent NOPQ cells can be polarized according to positional information residing in the embryo. If a left NOPQ cell is transplanted to the right side of a host embryo, it exhibits polarity comparable to that of right NOPQ cells. It has also been shown that contact between NOPQ cells serves as an external cue for their polarization. Another series of cell transplantation experiments have suggested that the competence of NOPQ cells to respond to external cues becomes undetectable shortly before the production of the first teloblast (N) from the NOPQ cell. Another series of experiments utilizing cell ablation techniques have shown that teloblasts N, P and Q are specified to express the N, P and Q fates, respectively, as early as their birth. In contrast, the O teloblast and its progeny are initially pluripotent and their fate becomes restricted through inductive signals emanating from its sister P lineage. On the basis of these findings, we have proposed a model for polarization of ectodermal teloblastogenesis in the Tubifex embryo.  相似文献   

8.
Facial symmetry has been proposed as a marker of developmental stability that may be important in human mate choice. Several studies have demonstrated positive relationships between facial symmetry and attractiveness. It was recently proposed that symmetry is not a primary cue to facial attractiveness, as symmetrical faces remain attractive even when presented as half faces (with no cues to symmetry). Facial sexual dimorphisms ('masculinity') have been suggested as a possible cue that may covary with symmetry in men following data on trait size/symmetry relationships in other species. Here, we use real and computer graphic male faces in order to demonstrate that (i) symmetric faces are more attractive, but not reliably more masculine than less symmetric faces and (ii) that symmetric faces possess characteristics that are attractive independent of symmetry, but that these characteristics remain at present undefined.  相似文献   

9.
10.
The degree to which fine‐scaled variation in floral symmetry is associated with variation in plant fitness remains unresolved, as does the question of whether floral symmetry is in itself a target of pollinator‐mediated selection. Geranium robertianum (Geraniaceae) is a broadly distributed species whose five‐petaled flowers vary widely with respect to their degree of rotational asymmetry. In this study, we used a naturally occurring population of plants to investigate whether floral rotational asymmetry and leaf bilateral symmetry were phenotypically correlated with a series of fitness‐related traits, and also used an experimental array with model flowers to investigate the preference of insect visitors for varying degrees of floral size and symmetry. We found that leaf asymmetry was not associated with any of the phenotypic traits measured, and that the degree of floral rotational asymmetry was strongly associated with decreased flower size and decreased pollen production. Our experimental arrays showed that insect visitors did not discriminate among model flowers on the basis of size or symmetry alone; however, insect visitors preferentially visited smaller, symmetric model flowers over larger, severely asymmetric model flowers. Taken together, our results suggest that floral and leaf symmetry in G. robertianum are not likely strong indicators of phenotypic quality, and that floral symmetry is unlikely to be a target of pollinator‐mediated selection. However, the relationship between floral asymmetry and pollen production may provide a role for fecundity selection on symmetry in this species. These data importantly add to the growing literature on the adaptive nature of floral symmetry in the wild.  相似文献   

11.
It has been suggested that bilateral symmetry may impose a costfor animals relying on camouflage because symmetric color patternsmight increase the risk of detection. We tested the effect ofsymmetry on crypsis, carrying out a predation experiment withgreat tits (Parus major) and black-and-white–patterned,artificial prey items and background. First, we found that detectiontime was significantly longer for a highly cryptic, asymmetricpattern based on a random sample of the background than forits symmetric variants. Second, we were able to arrange theelements of a prey pattern in a way that the resulting asymmetricpattern was highly cryptic and, furthermore, its symmetric variantwas highly cryptic as well. We conclude that symmetry may imposea substantial cost on cryptic patterns, but this cost variesamong patterns. This suggests that for prey, which predatorstypically view from an angle exposing their symmetry, selectionfor pattern asymmetry may be less important and selection fordecreased detectability cost of symmetry may be more importantthan previously thought. This may help to understand the existenceof so many prey with cryptic, symmetric color patterns.  相似文献   

12.
This study analyzed the relationship between breathing pattern and arm coordination symmetry in 11 expert male swimmers who performed the front crawl at their 100-m race pace using seven randomized breathing patterns. Two indexes of coordination (IdCP and IdCNP) and a symmetry index (SI) based on the difference of IdCP - IdCNP were calculated. IdCP calculated the lag time between the beginning of arm propulsion on the nonpreferential breathing side and the end of arm propulsion on the preferential breathing side; IdCNP did the converse. The IdCP and IdCNP comparisons and the SI showed coordination asymmetries among the seven breathing patterns. Specifically, breathing to the preferential side led to an asymmetry, in contrast to the other breathing patterns, and the asymmetry was even greater when the swimmer breathed to his nonpreferential side. These findings highlight the effect of breathing laterality in that coordination was symmetric in patterns with breathing that was bilateral, axed (as in breathing with a frontal snorkel), or removed (as in apnea). One practical application is that arm coordination asymmetry can be prevented or reduced by using breathing patterns that balance the coordination.  相似文献   

13.
A fundamental principle of brain organization is bilateral symmetry of structures and functions. For spatial sensory and motor information processing, this organization is generally plausible subserving orientation and coordination of a bilaterally symmetric body. However, breaking of the symmetry principle is often seen for functions that depend on convergent information processing and lateralized output control, e.g. left hemispheric dominance for the linguistic speech system. Conversely, a subtle splitting of functions into hemispheres may occur if peripheral information from symmetric sense organs is partly redundant, e.g. auditory pattern recognition, and therefore allows central conceptualizations of complex stimuli from different feature viewpoints, as demonstrated e.g. for hemispheric analysis of frequency modulations in auditory cortex (AC) of mammals including humans. Here we demonstrate that discrimination learning of rapidly but not of slowly amplitude modulated tones is non-uniformly distributed across both hemispheres: While unilateral ablation of left AC in gerbils leads to impairment of normal discrimination learning of rapid amplitude modulations, right side ablations lead to improvement over normal learning. These results point to a rivalry interaction between both ACs in the intact brain where the right side competes with and weakens learning capability maximally attainable by the dominant left side alone.  相似文献   

14.
A device has been constructed allowing the simultaneous transmission of two separate electrical signals in unrestrained small animals. We employed this device to investigate the motor output in free-flying locusts. The activation pattern of several combinations of different muscles was recorded, including bilateral symmetric muscles and pairs of antagonists. Particular attention was paid to the recruitment of a specific set of flight muscles in both winged segments during rolling manoeuvres. The relationship of the muscle activation with wing movement was analysed in combination with a high-speed video-monitoring. The muscles are activated in advance of the relevant stroke directions, in opposition to previous studies of tethered flying locusts. During turning manoeuvres a statistically significant difference in timing of the bilateral symmetric muscles is not apparent; this contrasts with the distinct difference revealed for the bilateral wing movement. It is discussed that rolling might rely on the fine tuned interaction of several major flight muscles or on the precise activation of a specific wing hinge muscle. Correspondence with investigations of bird flight is discussed.  相似文献   

15.
Facial attractiveness, symmetry and cues of good genes.   总被引:4,自引:0,他引:4  
Cues of phenotypic condition should be among those used by women in their choice of mates. One marker of better phenotypic condition is thought to be symmetrical bilateral body and facial features. However, it is not clear whether women use symmetry as the primary cue in assessing the phenotypic quality of potential mates or whether symmetry is correlated with other facial markers affecting physical attractiveness. Using photographs of men's faces, for which facial symmetry had been measured, we found a relationship between women's attractiveness ratings of these faces and symmetry, but the subjects could not rate facial symmetry accurately. Moreover, the relationship between facial attractiveness and symmetry was still observed, even when symmetry cues were removed by presenting only the left or right half of faces. These results suggest that attractive features other than symmetry can be used to assess phenotypic condition. We identified one such cue, facial masculinity (cheek-bone prominence and a relatively longer lower face), which was related to both symmetry and full- and half-face attractiveness.  相似文献   

16.
本文运用13— 18岁正常纯纵向样本资料 ,头颅定位后前位 X线头影测量法 ,分析正常人上、中面部的对称性与变异 ,探讨其随生长发育的变化趋势 ,为客观区分对称性的正常变异和不对称畸形提供依据。结果表明 :正常人上、中面部骨骼存在对称性的正常变异 ,其范围在13—18岁保持稳定 ,水平向小于8% ,垂直向不超过9mm;在其相对于颅底的位置关系及其骨骼各对应部位之间 ,有较好对称性 ;面部骨骼的生长发育具有潜在的优势特点。  相似文献   

17.
The salience of bilateral symmetry to humans has led to the suggestion that camouflage may be enhanced in asymmetrical patterns. However, the importance of bilateral symmetry in visual signals (and overall morphology) may constrain the evolution of asymmetrical camouflage, resulting in the bilaterally symmetrical cryptic patterns that we see throughout the animal kingdom. This study investigates the cuttlefish (Sepia officinalis), which can control the degree of symmetry in its coloration. Ten juvenile S. officinalis were filmed in two behavioural contexts (cryptic and threatened) to test the prediction that cryptic patterns will be expressed more asymmetrically than an anti-predator signal known as the 'deimatic display'. Cryptic body patterns, particularly those with a disruptive function, were found to exhibit a high degree of bilateral symmetry. By contrast, the components of the deimatic display were often expressed asymmetrically. These results are contrary to the predicted use of symmetry in defensive coloration, indicating that the role of symmetry in both crypsis and visual signalling is not as straightforward as previously suggested.  相似文献   

18.
19.
Bilaterally symmetrical, “regular” sea urchins in the Family Echinometridae (Class Echinoidea; Phylum Echinodermata) were found to lack a locomotor anterior. Heterocentrotus mammillatus and Echinometra mathaei were observed while locomoting. Members of both ellipsoidal species were found to proceed with their short or long axis foremost with statistically equivalent frequencies. This finding demonstrates that the evolution of bilateral symmetry is not always accompanied by the evolution of a locomotor “anterior” end. The elliptical echinometrid sea urchins provide a particularly appropriate study group for investigating the relationship between the evolution of body form and locomotor behavior. Although the radially symmetrical regular sea urchins, from which the echinometrids sprang, lack a locomotor anterior, all “irregular” echinoids, which are also derived from a regular ancestor but are bilaterally symmetrical, possess an “obligate” locomotor anterior. The symmetry and behavior exhibited by the elliptical echinometrid sea urchins therefore demonstrates that the first irregular echinoids (which exhibit bilateral symmetry by definition) need not have possessed a locomotor anterior as they do today.  相似文献   

20.
Repetitive mirror symmetric bilateral upper limb may be a suitable priming technique for upper limb rehabilitation after stroke. Here we demonstrate neurophysiological and behavioural after-effects in healthy participants after priming with 20 minutes of repetitive active-passive bimanual wrist flexion and extension in a mirror symmetric pattern with respect to the body midline (MIR) compared to an control priming condition with alternating flexion-extension (ALT). Transcranial magnetic stimulation (TMS) indicated that corticomotor excitability (CME) of the passive hemisphere remained elevated compared to baseline for at least 30 minutes after MIR but not ALT, evidenced by an increase in the size of motor evoked potentials in ECR and FCR. Short and long-latency intracortical inhibition (SICI, LICI), short afferent inhibition (SAI) and interhemispheric inhibition (IHI) were also examined using pairs of stimuli. LICI differed between patterns, with less LICI after MIR compared with ALT, and an effect of pattern on IHI, with reduced IHI in passive FCR 15 minutes after MIR compared with ALT and baseline. There was no effect of pattern on SAI or FCR H-reflex. Similarly, SICI remained unchanged after 20 minutes of MIR. We then had participants complete a timed manual dexterity motor learning task with the passive hand during, immediately after, and 24 hours after MIR or control priming. The rate of task completion was faster with MIR priming compared to control conditions. Finally, ECR and FCR MEPs were examined within a pre-movement facilitation paradigm of wrist extension before and after MIR. ECR, but not FCR, MEPs were consistently facilitated before and after MIR, demonstrating no degradation of selective muscle activation. In summary, mirror symmetric active-passive bimanual movement increases CME and can enhance motor learning without degradation of muscle selectivity. These findings rationalise the use of mirror symmetric bimanual movement as a priming modality in post-stroke upper limb rehabilitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号