首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We constructed two human tissue-type plasminogen activator/urokinase (t-PA/u-PA) hybrid cDNAs which were expressed by transfection of mouse Ltk- cells. The properties of the secreted proteins were compared with those of recombinant t-PA (rt-PA) and high molecular weight (HMW) u-PA. The hybrid proteins each contain the amino-terminal fibrin-binding chain of t-PA fused to the carboxy-terminal serine protease moiety of u-PA but differ by a stretch of 13 amino acid residues between kringle 2 of t-PA and the plasmin cleavage site of u-PA. Hybrid protein rt-PA/u-PA I contains amino acids 1-262 of t-PA connected with amino acids 147-411 of u-PA, whereas hybrid protein rt-PA/u-PA II consists of the same t-PA segment and residues 134-411 of u-PA. We demonstrated fibrin binding for rt-PA, whereas the hybrid proteins bind to a lesser extent and HMW u-PA has no affinity for fibrin. Plasminogen activation by either one of the hybrid proteins in the absence of a fibrin substitute was similar to that by HMW u-PA, while rt-PA was much less active. The catalytic efficiency, in the presence of a fibrin substitute, increases more than 2000-fold for rt-PA, about 250-fold for hybrid proteins I and II, and 12-fold for HMW u-PA, respectively. Under these conditions the hybrid proteins are more efficient plasminogen activators than the parental ones. The hybrid molecules form a 1:1 molar complex with the human endothelial plasminogen activator inhibitor (PAI-1), analogous to that formed by rt-PA and HMW u-PA. The relative affinity of rt-PA for PAI-1 is 4.6-fold higher than that of HMW u-PA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
There are two physiological plasminogen activators (PAs), tissue-type PA (t-PA) and urokinase (u-PA) which possess distinct immunological and biochemical characteristics. Using genetic engineering techniques a hybrid t:u-PA cDNA, comprised of amino acid (aa) sequences corresponding to the non-protease region (aa 1-261) of t-PA and the protease region (aa 132-411) of u-PA, was constructed. The t:u-PA gene after insertion into the SV40 expression vector was expressed in monkey Cos-1 cells. The 66-67 kDa t:u-PA was produced in an enzymatically active form. The fibrinolytic activity of the t:u-PA could be quenched by anti-urokinase as well as by anti-t-PA sera. Like urokinase, the t:u-PA showed a high intrinsic plasminogen activation. This activity, as in the case of t-PA, was stimulated by fibrin. The u-PA, on the other hand, stimulated plasminogen activation marginally in the presence of fibrin. Both the t:u-PA and t-PA showed binding affinity for fibrin clot. This study strongly suggests the autonomous nature of the structural domains in PA and also demonstrates the feasibility of shuffling these domains without loss of their functional activities.  相似文献   

3.
Human tissue-type plasminogen activator (t-PA) consists of five domains designated (starting from the N-terminus) finger, growth factor, kringle 1, kringle 2, and protease. The binding of t-PA to lysine-Sepharose and aminohexyl-Sepharose was found to require kringle 2. The affinity for binding the lysine derivatives 6-aminohexanoic acid and N-acetyllysine methyl ester was about equal, suggesting that t-PA does not prefer C-terminal lysine residues for binding. Intact t-PA and a variant consisting only of kringle 2 and protease domains were found to bind to fibrin fragment FCB-2, the very fragment that also binds plasminogen and acts as a stimulator of t-PA-catalyzed plasminogen activation. In both cases, binding could completely be inhibited by 6-aminohexanoic acid, pointing to the involvement of a lysine binding site in this interaction. Furthermore, the second site in t-PA involved in interaction with fibrin, presumably the finger, appears to interact with a part of fibrin, different from FCB-2.  相似文献   

4.
Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-PA have been designed to direct the synthesis of new plasminogen activators and to investigate the structure-function relationship in these molecules. The following classes of constructs were made starting from cDNA encoding human t-PA or u-PA: 1) u-PA mutants in which the Arg156 and Lys158 were substituted with threonine, thus preventing cleavage by thrombin and plasmin; 2) hybrid molecules in which the NH2-terminal regions of t-PA (amino acid residues 1-67, 1-262, or 1-313) were fused with the COOH-terminal region of u-PA (amino acids 136-411, 139-411, or 195-411, respectively); and 3) a hybrid molecule in which the second kringle of t-PA (amino acids 173-262) was inserted between amino acids 130 and 139 of u-PA. In all cases but one, the recombinant proteins, produced by transfected eukaryotic cells, were efficiently secreted in the culture medium. The translation products have been tested for their ability to activate plasminogen after in situ binding to an insolubilized monoclonal antibody directed against urokinase. All recombinant enzymes were shown to be active, except those in which Lys158 of u-PA was substituted with threonine. Recombination of structural regions derived from t-PA, such as the finger, the kringle 2, or most of the A-chain sequences, with the protease part or the complete u-PA molecule did not impair the catalytic activity of the hybrid polypeptides. This observation supports the hypothesis that structural domains in t-PA and u-PA fold independently from one to another.  相似文献   

5.
Human tissue-type plasminogen activator (t-PA) catalyses the conversion of inactive plasminogen into active plasmin, the main fibrinolytic enzyme. This process is confined to the fibrin surface by specific binding of t-PA to fibrin and stimulation of its activity by fibrin. Tissue-type plasminogen activator contains five domains designated finger, growth factor, kringle 1, kringle 2 and protease. The involvement of the domains in fibrin specificity was investigated with a set of variant proteins lacking one or more domains. Variant proteins were produced by expression in Chinese hamster ovary cells of plasmids containing part of the coding sequence for the activator. It was found that kringle 2 domain only is involved in stimulation of activity by fibrin. In the absence of plasminogen and at low concentration of fibrin, binding of t-PA is mainly due to the finger domain, while at high fibrin concentrations also kringle 2 is involved in fibrin binding. In the presence of plasminogen, fibrin binding of the kringle 2 region of t-PA also becomes important at low fibrin concentrations.  相似文献   

6.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

7.
The heavy chain of tissue plasminogen activator (t-PA) consists of four domains [finger, epidermal-growth-factor (EGF)-like, kringle 1 and kringle 2] that are homologous to similar domains present in other proteins. To assess the contribution of each of the domains to the biological properties of the enzyme, site-directed mutagenesis was used to generate a set of mutants lacking sequences corresponding to the axons encoding the individual structural domains. The mutant proteins were assayed for their ability to hydrolyze artificial and natural substrates in the presence and absence of fibrin, to bind to lysine-Sepharose and to be inhibited by plasminogen activator inhibitor-1. All the deletion mutants exhibit levels of basal enzymatic activity very similar to that of wild-type t-PA assayed in the absence of fibrin. A mutant protein lacking the finger domain has a 2-fold higher affinity for plasminogen than wild-type t-PA, while the mutant that lacks both finger and EGF-like domains is less active at low concentrations of plasminogen. Mutants lacking both kringles neither bind to lysine-Sepharose nor are stimulated by fibrin. However, mutants containing only one kringle (either kringle 1 or kringle 2) behave indistinguishably from one another and from the wild-type protein. We conclude that kringle 1 and kringle 2 are equivalent in their ability to mediate stimulation of catalytic activity by fibrin.  相似文献   

8.
Five cDNA encoding human tissue-type plasminogen activator (t-PA) variants with deletion and/or duplication of structural/functional domains were cloned and expressed in Chinese hamster ovary cells. The mutants included: rt-PA-delta FE (where r represents recombinant), with deletion of the finger (F) and growth factor (E) domains; rt-PA-delta K1 delta K2, with replacement of kringle 1 (K1) by a second copy of kringle 2 (K2); and rt-PA-delta FK1 delta K2, rt-PA-delta EK1 delta K2, and rt-PA-delta FEK1 delta K2, with deletions in rt-PA-delta K1 delta K2 of the finger or growth factor domain or both, respectively. The variant rt-PAs, purified to homogeneity, were obtained essentially as single-chain molecules. CNBr-digested fibrinogen enhanced plasminogen activation between 110-fold with rt-PA-delta EK1 delta K2 and 150-fold with rt-PA-delta FEK1 delta K2 as compared to 140-fold with rt-PA. All rt-PA moieties showed a comparable concentration-dependent binding to fibrin, except rt-PA-delta FE, which had significantly reduced binding that was, however, partially restored by additional replacement of K1 with K2. All the rt-PA variants with two copies of K2 showed increased binding to lysine-Sepharose as compared to rt-PA, whereas rt-PA-delta FE had reduced binding. All rt-PA moieties induced a similar time- and concentration-dependent lysis of a 125I-fibrin-labeled plasma clot immersed in human plasma. Equally effective concentrations (causing 50% clot lysis in 2 h) ranged between 1.0 microgram/ml for rt-PA-delta K1 delta K2 and 1.6 micrograms/ml for rt-PA-delta FE as compared to 0.5 microgram/ml for rt-PA. Thus, replacement in rt-PA of K1 by a second copy of K2, which is known to contain a lysine-binding site, significantly enhances its affinity for lysine, with maintenance of its affinity for intact fibrin. Deletion of the finger and growth factor domains results in decreased fibrin affinity and fibrinolytic potency in a plasma milieu, which are partially restored by replacement of K1 by K2.  相似文献   

9.
The binding of recombinant tissue-type plasminogen activator (rt-PA) to fibrin increases upon digestion of fibrin with plasmin. Optimal binding is observed following a limited plasmin digestion of fibrin, coinciding with the generation of fibrin fragment X polymers. We studied the involvement of the separate domains of the amino-terminal "heavy" (H) chain of rt-PA in this augmentation of fibrin binding. The fibrin-binding characteristics of a set of rt-PA deletion mutants, lacking either one or more of the structural domains of the H chain, were determined on intact fibrin matrices and on fibrin matrices that were subjected to limited digestion with plasmin. The augmented fibrin binding of rt-PA is partially abolished when the plasmin-degraded fibrin matrices are subsequently treated with carboxypeptidase B, demonstrating that this increased binding is dependent on the generation of carboxyl-terminal lysine residues in the fibrin matrix. Evidence is provided that this increase of fibrin binding is mediated by the kringle 2 (K2) domain that contains a lysine-binding site. Further increase of the fibrin binding of rt-PA is independent of the presence of carboxyl-terminal lysines. It is shown that the latter increase is not mediated by the K2 domain. Based on our data, we propose that the increase in fibrin binding, unrelated to the presence of carboxyl-terminal lysine residues, is mediated by the finger (F) domain, provided that this domain is correctly exposed in the remainder of the protein.  相似文献   

10.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

11.
A hybrid human cDNA was constructed by splicing of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5'-untranslated, the pre-pro region and amino acids Ser1-Thr263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu144-Leu411. The cDNA fragments were obtained from full length t-PA cDNA, cloned from Bowes melanoma poly(A)+ mRNA, and from full length u-PA cDNA, cloned from CALU-3 lung adenocarcinoma poly(A)+ mRNA. The hybrid (t-PA/u-PA) cDNA was expressed in Chinese hamster ovary cells and the translation product purified from the conditioned cell culture media. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000. On immunoblotting, it reacted both with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity of the protein was only 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single-chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA). The specific activity of the protein on fibrin plates was 57,000 IU/mg by comparison with the International Reference Preparation for Urokinase. Both the single-chain hybrid (t-PA/scu-PA) and the two-chain plasmin derivative (t-PA/tcu-PA) bound specifically to fibrin, albeit more weakly than t-PA. The t-PA/tcu-PA hybrid had a higher selectivity for fibrin than tcu-PA, measured in a system composed of a whole human 125I-fibrin-labeled plasma clot immersed in human plasma. Both hybrid proteins activated plasminogen directly with Km = 1.5 microM and k2 = 0.0058 s-1 for t-PA/scu-PA and with Km = 80 microM and k2 = 5.6 s-1 for t-PA/tcu-PA. CNBr-digested fibrinogen stimulated the activation of plasminogen with t-PA/tcu-PA (Km = 0.20 microM and k2 = 1.2 s-1). It is concluded that these t-PA/u-PA hybrid proteins combine, at least to some extent, the fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), which in some assays result in improved fibrin-mediated plasminogen activation.  相似文献   

12.
A chimeric plasminogen activator (t-PA/scu-PA-s), consisting of amino acids 1-263 of tissue-type plasminogen activator (t-PA) and 144-411 of single-chain urokinase-type plasminogen activator (scu-PA), was previously shown to maintain the enzymatic properties of scu-PA but to have only partially acquired the fibrin affinity of t-PA, possibly as a result of steric interaction between the functional domains of t-PA and scu-PA (Nelles, L., Lijnen, H. R., Collen, D., and Holmes, W.E. (1987) J. Biol. Chem. 262, 10855-10862). Therefore, we now have constructed an extended chimeric t-PA/scu-PA protein, consisting of amino acids 1-274 of t-PA and 138-411 of scu-PA, which thus has an additional sequence of 17 residues in the region joining the two proteins. The highly purified extended chimeric protein (t-PA/scu-PA-e) was found to have similar specific activity on fibrin film (65,000 IU/mg), kinetic constants for the activation of plasminogen (Km = 1 microM, k2 = 0.0026 s-1), fibrin affinity (50% binding at a fibrin concentration of 3.3 g/liter), and fibrin specificity of clot lysis in a plasma environment (50% lysis in 2 h with 8 nM of the chimer) as the previously characterized chimeric protein (t-PA/scu-PA-s). Thus, unexpectedly, the fibrin affinity of t-PA is also only partially expressed in this extended chimeric protein. Therefore, the NH2-terminal chains (A-chains) of the plasmin-generated two-chain derivatives t-PA/tcu-PA-e, t-PA/tcu-PA-s, and of t-PA were isolated. These A-chain structures of the chimers were found to have lost most of their fibrin affinity, whereas the fibrin affinity of the A-chain of native t-PA was maintained. Differential reactivity of the A-chain structures of both chimeric molecules with monoclonal antibodies directed against the A-chain of t-PA suggested that they were conformationally altered. Sequential fibrin binding experiments with t-PA/scu-PA-e and t-PA/scu-PA-s yielded 45 +/- 8 (n = 11) and 43 +/- 5% (n = 8), respectively, binding in the first cycle and 44 +/- 7 (n = 11) and 27 +/- 10% (n = 8), respectively, binding in the second cycle. This suggests that the low affinity of the chimeric molecules for fibrin is not due to the occurrence of subpopulations of molecules with different fibrin affinity but, instead, to a uniformly decreased fibrin affinity in all molecules.  相似文献   

13.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

14.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

15.
Fibrin interacts with tissue-type plasminogen activator (tPA) via the finger and the kringle 2 domains. Three monoclonal antibodies against tPA, designated MPW3VPA, MPW6VPA, and MPW7VPA, which react with epitopes in the tPA molecule involved in fibrin binding, were characterized. The IgM monoclonal antibody MPW6VPA, directed against an epitope close to the finger and epidermal growth factor domains, stimulated plasminogen activation only in the absence of CNBr-fibrinogen fragments by increasing kcat in a dose-dependent fashion, an effect which was not restricted to the intact molecule. These results suggest that MPW6VPA mimics the initial effect of fibrin bound to the tPA molecule, which results in a change of kcat values. The MPW6VPA effect was reversed by another antibody, MPW3VPA, also directed against epidermal growth factor and finger domains. The latter antibody also inhibited plasminogen activation by tPA in the presence of CNBr-fibrinogen fragments in a dose-dependent, apparently noncompetitive way. No effect of MPW3VPA was seen in the absence of CNBr-fibrinogen fragments. MPW7VPA directed against kringle 2 of tPA inhibited plasminogen activation by tPA only when CNBr-fibrinogen fragments were present. This inhibition was apparently competitive and dose-dependent. These data suggest that MPW3VPA interferes with the first phase of fibrin binding to tPA, whereas MPW7VPA interferes with the second phase of fibrin binding to the tPA molecule via kringle 2, resulting in Km changes.  相似文献   

16.
The enzyme tissue-type plasminogen activator (t-PA) and its substrate Glu-plasminogen can both bind to fibrin. The assembly of these three components results in about a 1000-fold acceleration of the conversion of Glu-plasminogen into plasmin. Fibrin binding of t-PA is mediated both by its finger (F) domain and its kringle-2 domain. Fibrin binding of Glu-plasminogen involves its kringle structures (K1-K5). It has been suggested that particular kringles contain lysine-binding sites and/or aminohexyl-binding sites, exhibiting affinity for specific carboxyl-terminal lysines and intrachain lysines, respectively. We investigated the possibility that t-PA and Glu-plasminogen kringles share common binding sites in fibrin, limitedly digested with plasmin. For that purpose we performed competition experiments, using conditions that exclude plasmin formation, with Glu-plasminogen and either t-PA or two deletion mutants, lacking the F domain (t-PA del.F) or lacking the K2 domain (t-PA del.K2). Our data show that fibrin binding of t-PA, mediated by the F domain, is independent of Glu-plasminogen binding. In contrast, partial inhibition by Glu-plasminogen of t-PA K2 domain-mediated fibrin binding is observed that is dependent on carboxyl-terminal lysines, exposed in fibrin upon limited plasmin digestion. Half-maximal competition of fibrin binding of both t-PA and t-PA del.F is obtained at 3.3 microM Glu-plasminogen. The difference between this value and the apparent dissociation constant of Glu-plasminogen binding to limitedly digested fibrin (12.1 microM) under these conditions is attributed to multiple, simultaneous interactions, each having a separate affinity. It is concluded that t-PA and Glu-plasminogen can bind to the same carboxyl-terminal lysines in limitedly digested fibrin, whereas binding sites composed of intrachain lysines are unique both for the K2 domain of t-PA and the Glu-plasminogen kringles.  相似文献   

17.
The effects of 4 monoclonal antibodies against human tissue-type plasminogen activator (t-PA) on binding of t-PA to lysine, fibrin, and heparin, and on fibrin-mediated activation of one-chain t-PA-amidolytic activity were investigated. The association constants of the antibodies were determined in a direct assay to be equal to 0.125 l/nmol, 0.225 l/nmol, 0.4 l/nmol, and 0.5 l/nmol for mAB 5, mAB 16, mAB 25, and mAB 31, respectively. All 4 monoclonal antibodies inhibited binding of intact t-PA to lysine-Sepharose and fibrin, and they suppressed fibrin-mediated activation of one-chain t-PA-amidolytic activity. Binding analysis demonstrated that mAB 25 inhibited t-PA binding to lysine-Sepharose and to fibrin as well as fibrin-mediated enhancement of one-chain t-PA-amidolytic activity in a competitive manner with inhibitor constants of 5 nmol/l, 3 nmol/l and 10 nmol/l, respectively. It was also shown that free lysine counteracts the association of t-PA with the antibodies. Binding of t-PA to heparin is only moderately affected by the 4 antibodies. Since t-PA possesses two homologous kringle domains which contain fibrin (lysine) binding sites, the results underline the importance of a lysine binding site for fibrin binding by intact t-PA and show that the binding of the enzyme to fibrin and lysine is mediated by the same binding site of a kringle domain. The parallel effects of antibodies on fibrin binding and on fibrin-mediated enhancement of one-chain t-PA amidolytic activity proves that the site of fibrin binding is identical with the site of fibrin activation. The binding site of heparin apparently differs from lysine and fibrin binding sites.  相似文献   

18.
Cultured human endothelial cells synthesize and secrete two types of plasminogen activator, tissue plasminogen activator (t-PA) and urokinase (u-PA). Previous work from this laboratory (Hajjar, K.A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719) has demonstrated dose-dependent, saturable, and high affinity binding of t-PA to two sites associated with cultural endothelial cell monolayers. We now report that an isolated plasma membrane-enriched endothelial cell fraction specifically binds 125I-t-PA at a single saturable site (Kd 9.1 nM; Bmax 3.1 pmol/mg membrane protein). Ligand blotting experiments demonstrated that both single and double-chain t-PA specifically bound to a Mr 40,000 membrane protein present in detergent extracts of isolated membranes, while high molecular weight, low molecular weight, and single-chain u-PA associated with a Mr 48,000 protein. Both binding interactions were reversible and cell-specific and were inhibitable by pretreatment of intact cells with nanomolar concentrations of trypsin. The relevant binding proteins were not found in subendothelial cell matrix, failed to react with antibodies to plasminogen activator inhibitor type 1 and interacted with their respective ligands in an active site-independent manner. The isolated t-PA binding site was resistant to reduction and preserved the capacity for plasmin generation. In contrast, the isolated u-PA binding protein was sensitive to reduction, and did not maintain the catalytic activity of the ligand on the blot. The results suggest that in addition to sharing a matrix-associated binding site (plasminogen activator inhibitor type 1), both t-PA and u-PA have unique membrane binding sites which may regulate their function. The results also provide further support for the hypothesis that plasminogen and t-PA can assemble on the endothelial cell surface in a manner which enhances cell surface generation of plasmin.  相似文献   

19.
The binding of tissue-type plasminogen activator (t-PA) to fibrin is mediated both by its finger domain and by its kringle-2 domain. In this report, we investigate the relative affinities of these domains for lysine. Human recombinant t-PA deletion-mutant proteins were prepared and their ability to bind to lysine-Sepharose was investigated. Mutants containing the kringle-2 domain bound to lysine-Sepharose, whereas mutants lacking this domain but containing the finger domain, the epidermal growth factor domain or the kringle-1 domain did not bind to lysine-Sepharose. Mutant proteins containing the kringle-2 domain could be specifically eluted from lysine-Sepharose with epsilon-amino caproic acid. This lysine derivative also abolished fibrin binding by the kringle-2 domain but had no effect on the fibrin-binding property of the finger domain. Thus, a lysine-binding site is involved in the interaction of the kringle-2 domain with fibrin but not in the interaction of the finger domain with fibrin. The implications of the nature of these two distinct interactions of t-PA with fibrin on plasminogen activation by t-PA will be discussed.  相似文献   

20.
The crystal structure of the kringle 2 domain of tissue plasminogen activator was determined and refined at a resolution of 2.43 A. The overall fold of the molecule is similar to that of prothrombin kringle 1 and plasminogen kringle 4; however, there are differences in the lysine binding pocket, and two looping regions, which include insertions in kringle 2, take on very different conformations. Based on a comparison of the overall structural homology between kringle 2 and kringle 4, a new sequence alignment for kringle domains is proposed that results in a division of kringle domains into two groups, consistent with their proposed evolutionary relation. The crystal structure shows a strong interaction between a lysine residue of one molecule and the lysine/fibrin binding pocket of a noncrystallographically related neighbor. This interaction represents a good model of a bound protein ligand and is the first such ligand that has been observed in a kringle binding pocket. The structure shows an intricate network of interactions both among the binding pocket residues and between binding pocket residues and the lysine ligand. A lysine side chain is identified as the positively charged group positioned to interact with the carboxylate of lysine and lysine analogue ligands. In addition, a chloride ion is located in the kringle-kringle interface and contributes to the observed interaction between kringle molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号