首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. 6-phosphogluconate dehydrogenase from sheep liver has been purified 350-fold by affinity chromatography with a final specific activity of 18 micronmol of NADP+/reduced min per mg of protein and an overall yield of greater than 40%. 2. A systematic investigation of potential ligands has been carried out: these included 6-phosphogluconate and NADP+, pyridoxal phosphate and several immobilized nucleotides. The results indicate that NADP+ is the most suitable ligand for the purification of 6-phosphogluconate dehydrogenase. 3. The effects of pH and alternative eluents have been examined in relation to the parameters known to affect the desorption phase of affinity chromatography; careful manipulation of the elution conditions permitted the separation of glucose 6-phosphate dehydrogenase, glutathione reductase and 6-phosphogluconate dehydrogenase from sheep liver on NADP+-Sepharose 4B. 4. A large-scale purification scheme for 6-phosphogluconate dehydrogenase is presented that uses the competitive inhibitors inorganic pyrophosphate and citrate as specific eluents.  相似文献   

2.
1. 6-Phosphogluconate dehydrogenase from Bacillus stearothermophilus was purified approximately 260-fold on triazine-immobilized dye columns to a final specific activity of 54 mumol of NADP+ reduced/min per mg of protein and an overall yield of 62%. 2. An investigation of the capacities of different triazine dyes that inhibit 6-phosphogluconate dehydrogenase was carried out. Cibacron Blue F3G-A and Procion Red HE-3B strongly inhibited the enzyme in free solution and were therefore chosen as the ligands in the purification scheme. 3. KCl was found to be the most suitable agent for eluting 6-phosphogluconate dehydrogenase from Procion Red HE-3B-Sepharose 6B. NADP+ could specifically elute 6-phosphogluconate dehydrogenase from Cibacron Blue F3G-A-Sepharose 6B. 4. A study of the effect of temperature on the binding of pure 6-phosphogluconate dehydrogenase to both Cibacron Blue-Sepharose and Procion Red-Sepharose showed that the binding increased with an increase in temperature.  相似文献   

3.
4.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, glutathione reductase and pyruvate kinase of Candida utilis and baker's yeast, when in anionic form, were adsorbed on a cation exchanger, P-cellulose, due to affinities similar to those for the phosphoric groups of their respective substrates; thus, glucose-6-phosphate dehydrogenase was readily eluted by either NADP+ or NADPH, glutathione reductase by NADPH, 6-phosphogluconate dehydrogenase by 6-phosphogluconate, and pyruvate kinase by either ATP or ADP. This type of chromatography may be called "affinity-adsorption-elution chromatography"; the main principle is different from that of so-called affinity-elution chromatography. Based on these findings, a large-scale procedure suitable for successive purification of several enzymes having affinities for the phosphoric groups of their substrates was devised. As an example, glucose-6-phosphate dehydrogenase was highly purified from baker's yeast and crystallized.  相似文献   

5.
Control of the activities of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malate dehydrogenase was investigated in intact rats and in hepatocyte cultures. 1) Adult females had 2-fold greater activities of hepatic glucose-6-phosphate- and 6-phosphogluconate dehydrogenases than adult males, but similar activities of malate dehydrogenase. Castrated males showed decreased activities of all three enzymes in comparison to age- and weight-matched intact controls. In starved animals the activities of all three enzymes decreased significantly. After refeeding with nonpurified diet the activities returned to the prestarved levels in females, but increased to clearly higher values in intact and castrated males. 2) Estrogen levels were in the same range in immature and adult male and female rats. Testosterone levels were highest in adult males, clearly lower in adult females (1/8) and immature males (1/8), still lower in immature females (1/15) and lowest in castrated males (1/40). A simple correlation of the sex differences in these hormone levels to sex differences in glucose-6-phosphate- and 6-phosphogluconate dehydrogenase activities was not apparent. 3) In serum-free, dexamethasone-supplemented 48-h cultures of hepatocytes from both male and female rats the basal activities of glucose-6-phosphate dehydrogenase were the same; they were increased 2-3 fold by insulin alone, 1.5 fold by estrogen alone and 4-5 fold by insulin plus estrogen. Apparently sex differences did not persist in 48-h cell cultures. 4) In 48-h cultures of male hepatocytes, then used as the experimental model, insulin alone increased the activity not only of glucose-6-phosphate dehydrogenase but also of 6-phosphogluconate and malate dehydrogenases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. 6-Phosphogluconate dehydrogenase from rabbit mammary gland was purified to homogeneity by the criterion of polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The molecular weight of the subunit is 52 000. The enzyme was purified 150-fold with a final specific activity of 20 mumol of NADP+ reduced/min per mg of protein and overall yield of 3%. The molecular weight of the native enzyme is estimated to be 104 000 from gel-filtration studies. The final purification step was carried out by affinity chromatography with NADP+-Sepharose. 2. The Km values for 6-phosphogluconate and NADP+ are approx. 54 muM and 23 muM respectively. 3. Citrate and pyrophosphate are competitive inhibitors of the enzyme with respect to both 6-phosphogluconate and NADP+. 4. MgCl2 affects the apparent Km for NADP+ at saturating concentrations of 6-phosphogluconate.  相似文献   

7.
A cDNA clone containing sequences complementary to the mRNA coding for rat hepatic 6-phosphogluconate dehydrogenase has been isolated and used to measure changes in specific mRNA levels during dietary and hormonal regulation of this enzyme. Hepatic mRNA was fractionated by sucrose gradient centrifugation to enrich for 6-phosphogluconate dehydrogenase mRNA sequences. A cDNA library was prepared from the fraction with maximal activity and then screened by differential colony hybridization using probes synthesized either from 6-phosphogluconate dehydrogenase mRNA enriched by polysome immunoadsorption or from unenriched hepatic mRNA. A single colony giving an appropriate differential signal was confirmed to contain sequences encoding 6-phosphogluconate dehydrogenase by specific immunoprecipitation of hybrid-selected translational products. 6-Phosphogluconate dehydrogenase mRNA contains about 2400 bases. The cloned cDNA comprises about 880 bases, or 35% of the mRNA. Southern analysis of restriction endonuclease digests of genomic DNA suggests that the major 6-phosphogluconate dehydrogenase gene is probably present in a single copy in the rat genome. Feeding a fat-free, high carbohydrate diet and administration of thyroid hormone increased the concentration of hybridizable 6-phosphogluconate dehydrogenase mRNA in liver. Thus, both dietary and hormonal regulation of 6-phosphogluconate dehydrogenase synthesis occurs at a pretranslational level.  相似文献   

8.
Data are presented for 16 enzymes from 8 metabolic systems in cell cultures consisting of approximately 95% astrocytes and 5% oligodendrocytes. Nine of these enzymes were also measured in cultures of oligodendrocytes, Schwann cells, and neurons prepared from both cerebral cortex and superior cervical ganglia. Activities, in mature astrocyte cultures, expressed as percentage of their activity in brain, ranged from 9% for glycerol-3-phosphate dehydrogenase to over 300% for glucose-6-phosphate dehydrogenase. Creatine phosphokinase activity in astrocytes was about the same as in brain, half as high in oligodendrocytes, but 7% or less of the brain level in Schwann cells and superior cervical ganglion neurons and only 16% of brain in cortical neurons. Three enzymes which generate NADPH, the dehydrogenases for glucose-6-phosphate and 6-phosphogluconate, and the NADP-requiring isocitrate dehydrogenase, were present in astrocytes at levels at least twice that of brain. Oligodendrocytes had enzyme levels only 30% to 70% of those of astrocytes. Schwann cells had much higher lactate dehydrogenase and 6-phosphogluconate dehydrogenase activities than oligodendrocytes, but showed a remarkable similarity in enzyme pattern to those of cortical and superior cervical ganglion neurons.Special issue dedicated to Dr. Lewis Sokoloff.  相似文献   

9.
Mechanisms underlying increased activity of 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate: NADP oxidoreductase [decarboxylating] EC 1.1.1.44) in axotomized rat superior cervical ganglia were explored using a highly sensitive micro-immunochemical assay employing antibodies raised in rabbits against the purified enzyme. 6-Phosphogluconate dehydrogenase was purified from rat brain more than 1700-fold by salt fractionation, anion exchange, and immunoaffinity chromatography. The purified enzyme consisted of identical subunits having molecular weights of about 48,800 which could aggregate to catalytically active isomers of various sizes; however, only one form of the enzyme was detected in freshly prepared homogenates of rat neural tissue. Physical and immunological properties of the enzyme from rat brain were similar to those from superior cervical ganglia and liver. Augmented 6-phosphogluconate dehydrogenase activity noted in superior cervical ganglia 2 days after transection of major postganglionic nerve trunks was accompanied by a parallel increase in immunoreactive protein. Michaelis constants of the enzyme were the same in control and axotomized ganglia, and the presence of activators and inhibitors was not detected. It is concluded that increases in 6-phosphogluconate dehydrogenase subsequent to axotomy can be accounted for entirely by an increase in the steady state concentration of this protein.  相似文献   

10.
Enzymes of glucose metabolism in Frankia sp.   总被引:5,自引:1,他引:4       下载免费PDF全文
Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures.  相似文献   

11.
A procedure is described for the purification of 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate:NADP oxidoreductase (decarboxylating) EC 1.1.1.44) from cell extracts of Streptococcus gaecalis. A 180-fold purification was achieved with an over-all yield of about 12% and an average specific activity of 14. The enzyme was homogeneous as determined by polyacrylamide gel electrophoresis, immunoelectrophoresis, and sedimentation equilibrium, studies. Its weight average molecular weight, as measured by sedimentation equilibrium, was 108,000 +/- 3,600. Other methods employed for molecular weight determinations gave values that ranged between 106,000 and 115,000. An analysis of the enzyme by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed it to be a dimer composed of subunits having equal molecular weight. The amino acid composition of the streptococcal enzyme is reported. The apparent Km values for NADP and 6-phosphogluconate were calculated from kinetic data and found to be 0.015 mM and 0.024 mM, respectively. Kinetic studies also indicated that the binding of one substrate did not affect the apparent affinity of the enzyme for the other substrate.  相似文献   

12.
By using the continuous culture technique, the transition from aerobiosis to anaerobiosis and its effect on a number of enzymes has been investigated in Escherichia coli K-12. A decrease in the oxygen partial pressure below 28.0 mm of Hg resulted firstly in an increase of the respiratory enzymes (reduced nicotinamide adenine dinucleotide [NADH] oxidase, 2.53-fold; succinic dehydrogenase, 1.4-fold; cytochrome b(1), 3.91-fold; and cytochrome a(2), 2.45-fold) before the electron transport system gradually collapsed as cytochrome a(2), followed by cytochrome b(1), succinic dehydrogenase, and finally NADH oxidase decreased in activity. The change from respiration to fermentation was initiated well before the oxygen tension reached zero by the increase in levels of fructose diphosphate-aldolase, glucose 6-phosphate, and 6-phosphogluconate dehydrogenases and a decrease in 2-oxoglutarate dehydrogenase. Whem the dissolved oxygen tension reached zero, dry weight and CO(2) formation together with isocitrate dehydrogenase decreased, whereas acid production and phosphofructokinase synthesis started to increase. Enzymatic investigations revealed that the kinetics of the enzyme phosphofructokinase from strict aerobic cultures (6.9 ppm oxygen in solution) was adenosine triphosphate (ATP)-insensitive, whereas the same enzyme from anaerobic cultures was ATP-sensitive. A mechanism is proposed for the change from aerobiosis to anaerobiosis together with the occurring change in glucose regulation.  相似文献   

13.
The lipogenic capacity of rat liver is increased in animals fed a high carbohydrate, fat-free diet or by the administration of 2,2',5'-triiodo-L-thyronine. Underlying this change is a generalized induction of the enzymes involved in lipogenesis, including glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme, which together serve to generate the additional NADPH required for increased fatty acid synthesis. This report presents evidence indicating that induction of the hexose-shunt dehydrogenases involves increased enzyme synthesis secondary to elevated enzyme specific mRNA levels, as has previously been shown for malic enzyme. Activities of specific mRNAs, estimated by cell-free translation of hepatic poly(A)-containing RNA in the mRNA dependent rabbit reticulocyte lysate, were compared with enzyme specific activities and relative rates of specific enzyme synthesis. The 2-fold increase in glucose-6-phosphate dehydrogenase specific activity in hyperthyroid rats and the 13-fold increase in rats fed a high carbohydrate, fat-free diet, relative to euthyroid, chow-fed controls were paralleled by comparable increases in the synthetic rates and mRNA levels of this enzyme. Similarly, consonant changes in the rate of enzyme synthesis and concentration of 6-phosphogluconate dehydrogenase mRNA accompanied the 2.5- and 3-fold increases in specific activity of this enzyme observed in response to hormonal and dietary induction, respectively. Thus, both thyroid hormone and carbohydrate feeding appear to induce glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase primarily by increasing the effective cellular concentrations of their respective mRNAs and, consequently, their rates of synthesis.  相似文献   

14.
A two-step procedure for the purification of 6-phosphogluconate dehydrogenase (EC 1.1.1.44; 6-PGDH) from sheep liver is described. The enzyme is directly bound to cellulose phosphate by batch extraction and eluted with a linear salt gradient. Purification is completed by affinity chromatography using NADP(+)-agarose. The result is 6-PGDH of high purity, greatly increased yield, and the highest specific activity yet achieved, with a significant reduction in the purification time.  相似文献   

15.
The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.  相似文献   

16.
In iodoacetate-treated microconidiating cultures of Neurospora crassa, mycelial yield, sucrose consumption and ethanol production are reduced. The specific activity of glyceraldehyde-3-phosphate dehydrogenase is sharply decreased while the specific activities of glucose-6-phosphate dehydrogenase and of 6-phosphogluconate dehydrogenase are stimulated. A polyphenoloxidase is induced in the microconidiating cultures.  相似文献   

17.
The activity of the key enzymes of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, transketolase) was determined in cell-free homogenates of Candida lipolytica 695 and Candida tropicalis 303 growing on different carbon sources. The activity of these enzymes remained almost the same in the course of growth of both cultures. The activity of the enzymes differed only slightly in the cells metabolizing hexadecane and glucose. The activity of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the cell-free homogenates of C. tropicalis 303 was twice as high as in the cells of C. lipolytica 695. The activity of transketolase was the same in both cultures. The main role of the pentose phosphate pathway is presumed to consist not in catabolism of the carbon source, but in biosynthesis of pentoses and other important intermediates.  相似文献   

18.
Bacteroids of R. leguminosarum MNF3841 isolated from pea nodules using Percoll gradients had activities of TCA cycle enzymes up to 6-fold higher than those measured in free-living cells grown on fumarate or sucrose. Activities of sugar catabolic enzymes on the other hand were 2–14-fold lower in isolated bacteroids than in sucrose-grown free-living cells. In continuous culture, cells of strain MNF3841 grown on sucrose under P i limitation had 2–3-fold higher activities of invertase, glucose-6-phosphate dehydrogenase, the Entner-Doudoroff enzymes and 6-phosphogluconate dehydrogenase, than cells grown on fumarate. With one exception O2 limited cultures had similar activities of the carbon catabolic enzymes to P i-limited cultures grown in the same substrate. Glucose-6-phosphate dehydrogenase in O2-limited cells grown of fumarate was 50% lower than in P i-limited cells. Co-utilization of fumarate and sucrose occurred with chemostat cultures supplied with both under a variety of conditions.Abbreviations E-D Entner-Doudoroff - EMP Embden-Meyerhof-Parnas - PEPCK phosphoenolpyruvate carboxy kinase - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulphonic acid]  相似文献   

19.
The fungus, Cunninghamella elegans has been widely used in bioremediation and microbial models of mammalian studies in many laboratories. Using the polymerase chain reaction to randomly amplify the insert directly from the single non-blue plaques of a C. elegans cDNA library, then partly sequencing and comparing with GenBank sequences, we have identified a clone which contains C. elegans 6-phosphogluconate dehydrogenase gene. The polymerase chain reaction product was cloned into a plasmid, pGEM-T Easy vector for full insert DNA sequencing. The 6-phosphogluconate dehydrogenase gene (1458 bases) and the deduced protein sequence were determined from the insert DNA sequence. The gene was found by open reading frame analysis and confirmed by the alignment of the deduced protein sequence with other published 6-phosphogluconate dehydrogenase sequences. Several highly conserved regions were found for the 6-phosphogluconate dehydrogenase sequences. The 6-phosphogluconate dehydrogenase gene was subcloned and over-expressed in a plasmid–E. coli system (pQE30). The cell lysate of this clone has a very high 6-phosphogluconate dehydrogenase enzyme activity. Most of the recombinant protein in this system was formed as insoluble inclusion bodies, but soluble in high concentration of urea-buffer. Ni-NTA resin was used to purify the recombinant protein which showed 6-phosphogluconate dehydrogenase enzyme activity. The recombinant protein has a predicted molecular size correlating with that revealed by sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. The C. elegans 6-phosphogluconate dehydrogenase was in a cluster with yeast' 6-phosphogluconate dehydrogenase in the phylogenetic tree. Bacterial 6-phosphogluconate dehydrogenase and higher organisms' 6-phosphogluconate dehydrogenase were found in different clusters.  相似文献   

20.
Activity loss of 6-phosphogluconate, glucose-6-phosphate, and glyceraldehyde-3-phosphate dehydrogenases occurs in crude plant extracts prepared with insoluble polyvinylpyrrolidone (PVP) and a reducing agent, such as mercaptoethanol. Oxidized nucleotide coenzymes (1 mM), in addition to mercaptoethanol (100 mM), in the extraction buffer stabilizes activity of these dehydrogenases in extracts from both woody and herbaceous plants. PVP and mercaptoethanol alone equally stabilize malate dehydrogenase from most species tested. The mercaptoethanol and coenzyme treatment has proven useful in quantification, purification, and characterization of dehydrogenases in physiological investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号