首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Artemisinin is a sesquiterpene lactone containing an endoperoxide bridge. It is a promising new antimalarial and is particularly useful against the drug resistant strains of Plasmodium falciparum. It has unique antimalarial properties since it acts through the generation of free radicals that alkylate parasite proteins. Since the antimalarial action of the drug is antagonised by glutathione and ascorbate and has unusual pharmacokinetic properties in humans, we have investigated if the drug is broken down by a typical reductive reaction in the presence of glutathione transferases. Cytosolic glutathione transferases (GSTs) detoxify electrophilic xenobiotics by catalysing the formation of glutathione (GSH) conjugates and exhibit glutathione peroxidase activity towards hydroperoxides. Artemisinin was incubated with glutathione, NADPH and glutathione reductase and GSTs in a coupled assay system analogous to the standard assay scheme with cumene hydroperoxide as a substrate of GSTs. Artemisinin was shown to stimulate NADPH oxidation in cytosols from rat liver, kidney, intestines and in affinity purified preparations of GSTs from rat liver. Using human recombinant GSTs hetelorogously expressed in Escherichia coli, artemisinin was similarly shown to stimulate NADPH oxidation with the highest activity observed with GST M1-1. Using recombinant GSTs the activity of GSTs with artemisinin was at least two fold higher than the reaction with CDNB. Considering these results, it is possible that GSTs may contribute to the metabolism of artemisinin in the presence of NADPH and GSSG-reductase We propose a model, based on the known reactions of GSTs and sesquiterpenes, in which (1) artemisinin reacts with GSH resulting in oxidised glutathione; (2) the oxidised glutathione is then converted to reduced glutathione via glutathione reductase; and (3) the latter reaction may then result in the depletion of NADPH via GSSG-reductase. The ability of artemisinin to react with GSH in the presence of GST may be responsible for the NADPH utilisation observed in vitro and suggests that cytosolic GSTs are likely to be contributing to metabolism of artemisinin and related drugs in vivo.  相似文献   

2.
In the present paper, we report a novel class of GSTs (glutathione transferases), called the Chi class, originating from cyanobacteria and with properties not observed previously in prokaryotic enzymes. GSTs constitute a widespread multifunctional group of proteins, of which mammalian enzymes are the best characterized. Although GSTs have their origin in prokaryotes, few bacterial representatives have been characterized in detail, and the catalytic activities and substrate specificities observed have generally been very modest. The few well-studied bacterial GSTs have largely unknown physiological functions. Genome databases reveal that cyanobacteria have an extensive arsenal of glutathione-associated proteins. We have studied two cyanobacterial GSTs which are the first examples of bacterial enzymes that are as catalytically efficient as the best mammalian enzymes. GSTs from the thermophile Thermosynechococcus elongatus BP-1 and from Synechococcus elongatus PCC 6301 were found to catalyse the conjugation of naturally occurring plant-derived isothiocyanates to glutathione at high rates. The cyanobacterial GSTs studied are smaller than previously described members of this enzyme family, but display many of the typical structural features that are characteristics of GSTs. They are also active towards several classical substrates, but at the same moderate rates that have been observed for other GSTs derived from prokaryotes. The cloning, expression and characterization of two cyanobacterial GSTs are described. The possible significance of the observed catalytic properties is discussed in the context of physiological relevance and GST evolution.  相似文献   

3.
Glutathione transferases,regulators of cellular metabolism and physiology   总被引:1,自引:0,他引:1  

Background

The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions.

Scope of review

The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism.

Major conclusions

All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca2 + channels in skeletal and cardiac muscle.

General significance

In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

4.
The use of plants to reclaim contaminated soils and groundwater, known as phytoremediation, is a promising biotechnological strategy which has gained a lot of attention in the last few years. Plants have evolved sophisticated detoxification systems against the toxin chemicals: following the uptake, the compounds are activated so that certain functional groups can conjugate hydrophilic molecules, such as thiols. The resulting conjugates are recognized by the tonoplast transporters and sequestered into the vacuoles. The xenobiotic conjugation with glutathione is mediated by enzymes which belong to the superfamily of glutathione S-transferases (GSTs) catalyzing the nucleophylic attack of the sulphur of glutathione on the electrophilic groups of the cytotoxic substrates therefore playing a crucial role in their degradation. This study was designed to identify the putative correlation between structural and functional characteristics of plant GST classes belonging to different plant species. Consequently, the protein sequences of the expressed GSTs have been retrieved from UniGene, classified and then analyzed in order to assess the evolutionary trend and to predict secondary structure. Moreover, the fingerprint analysis was performed with SCAN Prosite in the attempt to correlate meaningful signature profile and biological information. The results evidenced that all the soluble GSTs have a tendency to assume the α-helix secondary structure followed by random coil and β-sheet. The fingerprint analysis revealed that specific signature profiles related mainly to protein phosphorylation are in the GST classes of all considered species thus suggesting that they might be subjected to reversible activation by phosphorylation-mediated regulation. This approach provides the knowledge of the relationship between presence of conserved signature profile and biological function in the view of future selection of GSTs which might be employed in either mutagenesis or genetic engineering studies.  相似文献   

5.
Roles for glutathione transferases in plant secondary metabolism   总被引:5,自引:0,他引:5  
Plant glutathione transferases (GSTs) are classified as enzymes of secondary metabolism, but while their roles in catalysing the conjugation and detoxification of herbicides are well known, their endogenous functions are largely obscure. Thus, while the presence of GST-derived S-glutathionylated xenobiotics have been described in many plants, there is little direct evidence for the accumulation of similarly conjugated natural products, despite the presence of a complex and dichotomous metabolic pathway which processes these reaction products. The conservation in glutathione conjugating and processing pathways, the co-regulation of GSTs with inducible plant secondary metabolism and biochemical studies showing the potential of these enzymes to conjugate reactive natural products are all suggestive of important endogenous functions. As a framework for addressing these enigmatic functions we postulate that either: (a) the natural reaction products of GSTs are unstable and undergo reversible S-glutathionylation; (b) the conjugation products of GSTs are very rapidly processed to derived metabolites; (c) GSTs do not catalyse conventional conjugation reactions but instead use glutathione as a cofactor rather than co-substrate; or (d) GSTs are non-catalytic and function as transporter proteins for secondary metabolites and their unstable intermediates. In this review, we describe how enzyme biochemistry and informatics are providing clues as to GST function allowing for the critical evaluation of each of these hypotheses. We also present evidence for the involvement of GSTs in the synthesis of sulfur-containing secondary metabolites such as volatiles and glucosinolates, and the conjugation, transport and storage of reactive oxylipins, phenolics and flavonoids.  相似文献   

6.
7.
In order to elucidate the protective role of glutathione S-transferases (GSTs) against oxidative stress, we have investigated the kinetic properties of the human alpha-class GSTs, hGSTA1-1 and hGSTA2-2, toward physiologically relevant hydroperoxides and have studied the role of these enzymes in glutathione (GSH)-dependent reduction of these hydroperoxides in human liver. We have cloned hGSTA1-1 and hGSTA2-2 from a human lung cDNA library and expressed both in Escherichia coli. Both isozymes had remarkably high peroxidase activity toward fatty acid hydroperoxides, phospholipid hydroperoxides, and cumene hydroperoxide. In general, the activity of hGSTA2-2 was higher than that of hGSTA1-1 toward these substrates. For example, the catalytic efficiency (kcat/Km) of hGSTA1-1 for phosphatidylcholine (PC) hydroperoxide and phosphatidylethanolamine (PE) hydroperoxide was found to be 181.3 and 199.6 s-1 mM-1, respectively, while the catalytic efficiency of hGSTA2-2 for PC-hydroperoxide and PE-hydroperoxide was 317.5 and 353 s-1 mM-1, respectively. Immunotitration studies with human liver extracts showed that the antibodies against human alpha-class GSTs immunoprecipitated about 55 and 75% of glutathione peroxidase (GPx) activity of human liver toward PC-hydroperoxide and cumene hydroperoxide, respectively. GPx activity was not immunoprecipitated by the same antibodies from human erythrocyte hemolysates. These results show that the alpha-class GSTs contribute a major portion of GPx activity toward lipid hydroperoxides in human liver. Our results also suggest that GSTs may be involved in the reduction of 5-hydroperoxyeicosatetraenoic acid, an important intermediate in the 5-lipoxygenase pathway.  相似文献   

8.
Marine Glutathione <Emphasis Type="Italic">S</Emphasis>-Transferases   总被引:2,自引:0,他引:2  
The aquatic environment is generally affected by the presence of environmental xenobiotic compounds. One of the major xenobiotic detoxifying enzymes is glutathione S-transferase (GST), which belongs to a family of multifunctional enzymes involved in catalyzing nucleophilic attack of the sulfur atom of glutathione (γ-glutamyl-cysteinylglycine) to an electrophilic group on metabolic products or xenobiotic compounds. Because of the unique nature of the aquatic environment and the possible pollution therein, the biochemical evolution in terms of the nature of GSTs could by uniquely expressed. The full complement of GSTs has not been studied in marine organisms, as very few aquatic GSTs have been fully characterized. The focus of this article is to present an overview of the GST superfamily and their critical role in the survival of organisms in the marine environment, emphasizing the critical roles of GSTs in the detoxification of marine organisms and the unique characteristics of their GSTs compared to those from non-marine organisms.  相似文献   

9.
Plant glutathione transferases   总被引:5,自引:0,他引:5  
Dixon DP  Lapthorn A  Edwards R 《Genome biology》2002,3(3):reviews300-reviews300410
The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure.  相似文献   

10.
Searches with the human Omega glutathione transferase (GST) identified two outlying groups of the GST superfamily in Arabidopsis thaliana which differed from all other plant GSTs by containing a cysteine in place of a serine at the active site. One group consisted of four genes, three of which encoded active glutathione-dependent dehydroascorbate reductases (DHARs). Two DHARs were predicted to be cytosolic, whereas the other contained a chloroplast targeting peptide. The DHARs were also active as thiol transferases but had no glutathione conjugating activity. Unlike most other GSTs, DHARs were monomeric. The other class of GST comprised two genes termed the Lambda GSTs (GSTLs). The recombinant GSTLs were also monomeric and had glutathione-dependent thiol transferase activity. One GSTL was cytosolic, whereas the other was chloroplast-targeted. When incubated with oxidized glutathione, the putative active site cysteine of the GSTLs and cytosolic DHARs formed mixed disulfides with glutathione, whereas the plastidic DHAR formed an intramolecular disulfide. DHAR S-glutathionylation was consistent with a proposed catalytic mechanism for dehydroascorbate reduction. Roles for the cytosolic DHARs and GSTLs as antioxidant enzymes were also inferred from the induction of the respective genes following exposure to chemicals and oxidative stress.  相似文献   

11.
We report here an exhaustive analysis of the glutathione transferases (GSTs) in the model brown alga Ectocarpus siliculosus using available genomic resources. A genome survey revealed the presence of twelve cytosolic GSTs, belonging to the Sigma class, two pseudogenes, one GST of the Kappa class, and three microsomal GSTs of the MGST3 family of membrane associated protein involved in eicosanoid and glutathione metabolism. Gene structure and phylogenetic analyses demonstrated the partition of the Sigma GSTs into two clusters which have probably evolved by duplication events. Gene expression profiling was conducted after the addition of high concentrations of chemicals, such as H(2)O(2), herbicides, heavy metals, as well as fatty acid derivatives, in order to induce stress conditions and to monitor early response mechanisms. The results of these experiments suggested that E. siliculosus GST genes are recruited in different and specific conditions. In addition, heterologous expression in yeast of two E. siliculosus microsomal GST showed that these enzymes feature peroxidase rather than transferase activity. The potential involvement of E. siliculosus GST in the metabolism of oxygenated polyunsaturated fatty acids is discussed.  相似文献   

12.
A library of alpha class glutathione transferases (GSTs), composed of chimeric enzymes derived from human (A1-1, A2-2 and A3-3), bovine (A1-1) and rat (A2-2 and A3-3) cDNA sequences was constructed by the method of DNA shuffling. The GST variants were screened in bacterial lysates for activity with the immunosuppressive agent azathioprine, a prodrug that is transformed into its active form, 6-mercaptopurine, by reaction with the tripeptide glutathione catalyzed by GSTs. Important structural determinants for activity with azathioprine were recognized by means of primary structure analysis and activities of purified enzymes chosen from the screening. The amino acid sequences could be divided into 23 exchangeable segments on the basis of the primary structures of 45 chosen clones. Segments 2, 20, 21, and 22 were identified as primary determinants of the azathioprine activity representing two of the regions forming the substrate-binding H-site. Segments 21 and 22 are situated in the C-terminal helix characterizing alpha class GSTs, which is instrumental in their catalytic function. The study demonstrates the power of DNA shuffling in identifying segments of primary structure that are important for catalytic activity with a targeted substrate. GSTs in combination with azathioprine have potential as selectable markers for use in gene therapy. Knowledge of activity-determining segments in the structure is valuable in the protein engineering of glutathione transferase for enhanced or suppressed activity.  相似文献   

13.
In contrast to their mammalian hosts, parasitic nematodes are heme auxotrophs and require pathways for the uptake and transport of exogenous heme for incorporation into hemoproteins. Phase II detoxification Nu-class glutathione transferase (GST) proteins have a proposed role as heme-binding ligandins in parasitic nematodes. The genome-verified free-living nematode Caenorhabditis elegans also cannot synthesize heme and is an ideal functional genomics model to delineate the role of individual nematode GSTs in heme trafficking and heme detoxification. In this study, C. elegans was exposed to externally controlled heme concentrations ranging from 20-fold suboptimal growth levels to 10-fold supra-optimal growth levels to mimic fluctuations in blood- and tissue-feeding parasitic cousins from the same nematode group. A new heme-responsive GST (GST-19) was identified by subproteomics approaches. Functional characterization of this and two other C. elegans GSTs revealed that they all have high affinity for heme compounds similar to mammalian soluble heme carrier proteins such as HBP23 ( K d approximately 10 (-8) M). In the genomics-predicted absence of orthologous mammalian soluble heme-binding proteins in nematodes, we propose that Nu-class GSTs are candidates in the cellular processing of heme compounds. Toxic heme binding may be coupled to enzymatic protection from its breakdown as several GSTs possess glutathione peroxidase activity.  相似文献   

14.
Research on the effects of polychlorinated biphenyl (PCB) toxicity tends to focus on commercial PCB congeners and parent PCBs themselves. However, studies have suggested that PCB metabolites may be more interesting than the parent compounds because of their high reactivity. As a key metabolic enzyme, glutathione S-transferases (GSTs) are responsible for detoxification by catalyzing the conjugation reaction of glutathione (GSH) to xenobiotics. Inhibition of GST activity indicates reduced detoxification ability. We investigated the inhibition of chicken liver GSTs by parent PCBs and their metabolites and observed dose-dependent inhibition in vitro; inhibitory efficiency declined in the order GSH-conjugate > mono-hydroxyl ≈ quinone ≈ hydroquinone > parent PCB. Structure-inhibitory activity relationship studies indicated that with the inhibitory activity greatly increases with the number of GSH moieties or chlorine substituents on the quinone ring. However, no significant linear relationship was observed for chlorine pattern changes on the phenyl ring. The reversibility of PCB metabolite inhibition of GSTs is discussed. PCB mono-hydroxyl, hydroquinone and quinone forms showed irreversible inhibition of GSTs, which suggests a mechanism involving covalent binding to cysteine residues in the GST active site. PCB glutathionyl conjugates showed reversible GST inhibition, implying non-covalent binding. Furthermore, reactive oxygen species did not significantly affect GST activity.  相似文献   

15.
Cytosolic glutathione transferase (GSTs) are a family of multi-functional proteins which catalyse the conjugation of glutathione (GSH) to a large variety of endogenous and exogenous electrophilic compounds. Much is known about cytosolic mammalian GSTs, however, the presence of GSTs in several aerobic and anaerobic micro-organisms has also been demonstrated. Several findings seem to suggest that bacterial GSTs are involved in processes of biodegradation of xenobiotics, including antibiotics. However, the function played by these enzymes in the bacterial cell still remains to be clarified. At present, it is ill-defined whether bacterial GST can be classified, as in the case of mammalian enzymes, into several distinct classes.Here we report the purification of a GST isoform from Haemophilus influenzae using GSH-affinity chromatography. The purified protein was characterised by immunological and kinetic properties different from other known GSTs. The dissociation constants of chloramphenicol, ampicillin, rifampicin and tetracycline to the purified enzyme were 0.62, 9.06, 4.08 and 1.77 microM, respectively, as determined by following the quenching of the protein intrinsic fluorescence. These values were much lower than those previously determined for the same drugs with other mammalian or bacterial GSTs.The present results indicate that the enzyme purified from H. influenzae is a novel GST isoform well distinguished from other known mammalian or bacterial GSTs.  相似文献   

16.
The possible role of glutathione S-transferases (GST) in detoxification of fatty acid epoxides generated during lipid peroxidation has been evaluated. Present studies showed that cytosolic human glutathione S-transferases belonging to alpha, mu, and pi classes isolated from human liver and lung catalyzed the conjugation of glutathione and 9,10-epoxystearic acid. The product of enzymatic reaction, i.e., conjugate of GSH and epoxystearic acid, was isolated and characterized. The Michaelis constant (Km) values of the alpha, mu, and pi classes of GSTs for 9,10-epoxystearic acid were found to be 0.47, 0.32 and 0.80 mM, respectively, whereas the maximal velocity (V max) values for the alpha, mu, and pi classes of GSTs were found to be 142, 256, and 52 mol/min/mol, respectively. These results indicate that even though 9,10-epoxystearic acid is a substrate for all the three classes of GSTs, the mu class isozymes have maximum activity toward this substrate and may preferentially metabolize fatty acid epoxides more effectively as compared to the other classes of GSTs.  相似文献   

17.
Genomic organization of the glutathione S-transferase family in insects   总被引:2,自引:0,他引:2  
Cytosolic glutathione S-transferases (GSTs) are a large and diverse gene family in insects. They are classified into six major subclasses. Sigma, Omega, Zeta, and Theta have representatives across Metazoa while Delta and Epsilon are specific to Insecta and Holometabola, respectively. In this study, GSTs are assigned to a subclass by a combination of literature, phylogenetic, and genomic evidence. Moreover, it is confirmed that GSTs frequently cluster by genomic position as a result of recent gene expansions. These expansions are largely explained by the number of protein-coding genes in the genome, although life history is another contributing factor.  相似文献   

18.
Glutathione S-transferases (GSTs) from Fasciola hepatica have been purified by glutathione affinity chromatography. Two closely migrating species of Mr 26,000 and 26,500 were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and several species resolved by two-dimensional gel analysis, indicating substantial heterogeneity among the GSTs. N-terminal amino acid sequencing revealed one core sequence containing three polymorphisms, whereas the sequence of GST peptides implied a minimum of three different GSTs. The amino acid sequence data assigned the F. hepatica GSTs to the mu class of GSTs with high similarities to these proteins in other helminths and mammals. The native GSTs of F. hepatica appeared to behave as dimers as determined by molecular sieving chromatography. The observation that the GSTs of F. hepatica are heterogeneous in sequence and behave as dimers in the native state suggest that these isoenzymes may exhibit considerable functional heterogeneity which may be of importance to the parasite. Immunocytochemical studies suggest that the main source of GST in F. hepatica are the parenchymal cells and peripheral tissues of the parasite. Some extracellular GST is associated with the lamellae of the intestinal epithelium. The identification of an intestinal GST is unique among trematodes studied to date.  相似文献   

19.
The ubiquitous glutathione transferases (GSTs) catalyze glutathione conjugation to many compounds and have other diverse functions that continue to be discovered. We noticed sequence similarities between Omega class GSTs and a nuclear chloride channel, NCC27 (CLIC1), and show here that NCC27 belongs to the GST structural family. The structural homology prompted us to investigate whether the human Omega class glutathione transferase GSTO1-1 forms or modulates ion channels. We find that GSTO1-1 modulates ryanodine receptors (RyR), which are calcium channels in the endoplasmic reticulum of various cells. Cardiac RyR2 activity was inhibited by GSTO1-1, whereas skeletal muscle RyR1 activity was potentiated. An enzymatically active conformation of GSTO1-1 was required for inhibition of RyR2, and mutation of the active site cysteine (Cys-32 --> Ala) abolished the inhibitory activity. We propose a novel role for GSTO1-1 in protecting cells containing RyR2 from apoptosis induced by Ca(2+) mobilization from intracellular stores.  相似文献   

20.
Azathioprine is a prodrug that is widely used clinically as an immunosuppressive agent. The pharmacological action of azathioprine is associated with the release of 6-mercaptopurine by a reaction involving glutathione. This biotransformation of azathioprine is catalyzed by glutathione transferases (GSTs). The nonenzymatic reaction with glutathione is minimal in comparison with the GST-catalyzed process, but azathioprine is still a slow substrate in comparison with the most effective GST substrates. Novel GSTs with higher catalytic efficiency toward azathioprine could be useful in novel therapeutic applications; therefore, directed evolution of GSTs for enhanced activities is desirable. However, screening for variants having higher catalytic activity with azathioprine is a time-consuming process due to the low activity with this substrate. A new chromogenic and faster substrate, 1-methyl-4-nitro-5-(4-nitrophenylthio)-1H-imidazole (NPTI), has been synthesized and characterized by assays with several GSTs. The novel substrate mimicked azathioprine in the reaction with glutathione catalyzed by alpha class GSTs and, therefore, is a valuable surrogate in the screening of large mutant libraries. NPTI may also find use in the elucidation of the exact mechanism of immunosuppression effected by azathioprine where there is evidence that the imidazole moiety of azathioprine, rather than 6-mercaptopurine, is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号