首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA polymerase was solubilized from adult liver chromatin-membrane complex. The activity of this solubilized enzyme was 20–30 times higher than that of the partially purified cytoplasmic DNA polymerase. The solubilized nuclear particulate enzyme differed from the cytoplasmic enzyme in properties such as template preference, salt effect and pH optimum. ATP stimulated only the cytoplasmic enzyme, but EDTA and spermidine, stimulated the solubilized nuclear particulate enzyme but not the cytoplasmic enzyme. On sucrose density gradient centrifugation the cytoplasmic DNA polymerase sedimented around 9 S and the solubilized nuclear enzyme sedimented around 3–4 S.  相似文献   

2.
Cytoplasmic hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified from the soluble fraction of a rat brain homogenate by a procedure that included a unique affinity elution of the enzyme from Blue Dextran-Sepharose. The purified enzyme was examined with respect to properties in which the impure cytoplasmic enzyme has been reported to differ from the solubilized mitochondrial enzyme. These included the ability to bind to mitochondria, inhibition by quercetin, effect of pH on activity, and kinetics. In all regards the purified mitochondrial and cytoplasmic enzymes appeared identical. In addition, comparative peptide maps after partial proteolysis showed no detectable differences. These results do not support the view that there exist distinct mitochondrial and cytoplasmic forms of hexokinase, the latter being permanently relegated to a cytoplasmic location and unable to participate in a dynamic equilibrium with the mitochondrially-bound enzyme. Alternatives are proposed to explain previous results that had been interpreted as indirect evidence for the existence of a distinct cytoplasmic hexokinase.  相似文献   

3.
The cytoplasmic leucyl-tRNA synthetase was purified from bean (Phaseolus vulgaris) leaves. After ammonium sulfate fractionation and chromatography on Sephadex G-50, DEAE-cellulose, hydroxylapatite, and phosphocellulose, complete purification was achieved by blue Sepharose CL-6B chromatography using specific elution with pure yeast tRNALeu1. The enzyme was purified 1050-fold and had a specific activity of 940 nmol of leucyl-tRNA formed/min/mg of protein. Polyacrylamide gel electrophoresis of the native enzyme showed one band, but the denatured enzyme showed two bands. These two protein bands are structurally related. The smallest protein appears to be a cleavage product from the largest one, suggesting the presence of a sensitive cleavage site in the cytoplasmic leucyl-tRNA synthetase. The cytoplasmic enzyme is a monomer (Mr = 130,000), larger than its chloroplastic counterpart (Mr = 120,000). The two enzymes differ in their substrate (tRNA) specificity, tryptic peptide map, and amino acid composition. Antibodies were raised against the cytoplasmic enzyme and against the chloroplastic enzyme and no cross-immunological reaction was detected, showing that the two enzymes do not share any antigenic determinant. Taken together, these results suggest that P. vulgaris cytoplasmic and chloroplastic leucyl-tRNA synthetases are coded for by different genes.  相似文献   

4.
Cytoplasmic NAD-dependent malate dehydrogenase is decreased in activity in three transplantable mouse hepatomas compared to the activity of this enzyme in liver tissue. This enzyme is composed of several molecular forms of similar size which differ slightly in charge; the total activity and the discernible number of forms of the enzyme are decreased in both hepatoma and fetal liver. Mixing experiments suggest the absence of a significant quantity of unbound inhibitor of enzyme activity in the tumor or an activator in the liver. The liver cytoplasmic enzyme was purified to homogeneity by a relatively rapid method using Blue Sepharose affinity chromatography, which results in a good yield and high specific activity of the enzyme. Cytoplasmic and mitochondrial enzymes bind and elute differentially from this affinity resin. Molecular weight, kinetic constants and amino acid composition of the cytoplasmic enzyme were determined. Monospecific antiserum to the cytoplasmic enzyme has been produced in a goat and used to demonstrate a lack of immunological cross-reactivity between the mitochondrial and cytoplasmic enzyme. The tumor and liver cytoplasmic enzymes possess similar, if not identical, immunological determinants. Immunotitration experiments have been used to demonstrate that liver and hepatoma enzyme are identical in specific activity. Thus, the reduction in level of cytoplasmic enzyme in hepatoma is due to a decrease in the number of molecules per tissue mass.  相似文献   

5.
The concentration of cytoplasmic NADP(+)-dependent isocitrate dehydrogenase increased 20.2-fold during gonadotropin-induced development of the immature rat ovary. Measurement was by protein (Western) blotting using polyclonal antibodies raised against purified enzyme from the porcine corpus luteum. The increase in enzyme concentration during development correlated well with the 18.5-fold increase observed for the specific activity of the enzyme in the cytosolic fraction. An immunochemical similarity was demonstrated between the cytoplasmic enzyme from the ovary, testes, placenta, skeletal muscle, brain, liver, kidney, mammary and adrenal gland. However the mitochondrial NADP(+)-dependent isocitrate dehydrogenase from these tissues was found to be immunochemically distinct from the cytoplasmic enzyme. The concentration of the substrate D(+/-)-threo-isocitrate in the ovaries was measured by fluorometry and found to increase 3.1-fold during hormone-induced development. The intracellular concentration of substrate was estimated to be of the same order of magnitude as the enzyme concentration. We conclude that the increase in cytoplasmic NADP(+)-dependent isocitrate dehydrogenase activity observed during the gonadotropin-stimulated development of the rat ovary is due to increased concentration of enzyme rather than to an activation of the enzyme. The activity of the enzyme in vivo appears to be regulated by the availability of the substrate D(+/-)-threo-isocitrate.  相似文献   

6.
Phenylalanine hydroxylase was detected among human liver bioptats and autoptats extracted with 0.4% Triton X-100 from the 105,000 g homogenate fraction. In contrast to the membrane form of the rat liver enzyme, human liver phenylalanine hydroxylase is detected both by its enzymatic activity and immunochemically under non-denaturating conditions. The enzymatic activity of phenylalanine hydroxylase makes 5-15% of that of the cytoplasmic fraction and 20-30% of the amount of antigen in the cytoplasmic fraction and 20-30% of the amount of antigen in the cytoplasmic fraction as can be evidenced from rocket immunoelectrophoresis data. Immunoblotting of proteins performed after denaturating electrophoresis of the membrane and cytoplasmic fractions revealed an antigen band with a similar electrophoretic mobility. The subunit composition of the enzyme in both fractions was characterized by two-dimensional electrophoresis with subsequent immunoblotting. It was found that the membrane fraction of the enzyme is represented only by the L-subunit with Mr of 55 kD, whereas the cytoplasmic fraction, besides the predominant L-subunit, also contains 2H-subunits of the enzyme with Mr = 57 kD. These 2H-subunits differ between themselves as well as from the L-subunit by the pI value.  相似文献   

7.
The existence of a microsomal acetyl-CoA carboxylase in the rat epididymal adipose tissue was demonstrated in vitro in the present study. Its specific activity was of the same order of magnitude as that of the cytoplasmic acetyl-CoA carboxylase. The effect of several experimental conditions on the enzymatic activities of both enzymes were tested; fasting for 24 hr strongly increased (2.5-4 times) the activity of the microsomal enzyme while the cytoplasmic enzyme remained unchanged. Palmitoyl-CoA (1 and 5 microM), an inhibitor of acetyl-CoA carboxylase, had a greater effect on the cytoplasmic (33 and 88% inhibition) than on the microsomal enzyme (0 and 37% inhibition).  相似文献   

8.
Abstract The membrane-bound hydrogenase was localized in cells of Alcaligenes eutrophus by electron microscopic immunocytochemistry. Post-embedding labeling performed on ultrathin sections revealed that the enzyme was located predominantly (80%) at the cell periphery in autotrophically and heterotrophically grown bacteria harvested from the exponential phase of growth. In the stationary growth phase, however, only 50% of the enzyme was found at the cell periphery; the remaining 50% was distributed over the cytoplasm. The relative amount of electron microscopic label per cell as seen by application of the protein A—gold technique was higher in cells grown autotrophically as compared to cells grown heterotrophically on fructose. Derepression of the enzyme was followed electron microscopically in a substrate-shift experiment (growth on fructose, followed by a shift to glycerol). Major amounts of the enzyme appeared to undergo a reattachment to the cytoplasmic membrane under these conditions, starting with a reduced location of the enzyme in the cytoplasm and an accumulation in cell areas close to the cytoplasmic membrane. These findings indicate that the 'membrane-bound' hydrogenase (i.e., that material enriched as membrane-bound enzyme according to the appropriate activity test) is not, in fact, membrane bound or membrane integrated but membrane associated. It may or may not interact with the cytoplasmic face of the cytoplasmic membrane, depending on the growth phase and conditions.  相似文献   

9.
Propranolol, a cationic amphiphilic drug, caused enhanced incorporation of labeled precursor into phosphatidic acid and its metabolites in rat cerebral cortex mince, suggesting increased biosynthesis or reduced degradation. Inhibition of phosphatidate phosphohydrolase could explain the observed drug-induced accumulation of phosphatidic acid and other acidic lipids. Propranolol exhibited differential effects on the free and membrane-bound forms of phosphatidate phosphohydrolase. The drug inhibited cytoplasmic enzyme in a dose-dependent manner only when membrane-bound substrate was used but had practically no effect on the membrane-bound enzyme irrespective of the nature of the substrate used or on the cytoplasmic enzyme when free substrate was used. Brain cytoplasmic enzyme obtained from rats sacrificed 30 min after intraperitoneal injections of propranolol did not show any inhibition. Propranolol bound to membranes may prevent cytoplasmic enzyme action, probably by decreasing the availability of substrate through the formation of stable lipid-drug-protein complexes.  相似文献   

10.
DNA polymerases have been prepared from leukaemic and normal spleens and their fidelity in copying a polyd AT).polyd(AT) template assessed. The leukaemic cytoplasmic DNA polymerases were less accurate than the controls whereas no difference in accuracy was observed in the nuclear DNA polymerases. The preparations of leukaemic cytoplasmic DNA polymerase also contained the enzyme terminal deoxynucleotidyl transferase. When this enzyme was removed by further purification the accuracy of the cytoplasmic DNA polymerases increased to that of the controls.  相似文献   

11.
Endocrine control of cytoplasmic factors modulating adenylate cyclase activity in rat lung membranes was investigated. Hypophysectomy, adrenalectomy and thyroidectomy showed an adverse effect on the body and organ weights. Lung protein, glycogen and DNA contents were decreased in the endocrine ablated animals which were restored to the normal values on hormone treatment. Phosphodiesterase and phosphorylase activities were increased and decreased in adrenalectomized and thyroidectomized animals, respectively. The activities of these enzymes were restored to normal values on hormone treatment. Adrenalectomy and thyroidectomy affected ATPases differently. Basal adenylate cyclase activity in rat lung membranes was not affected by adrenalectomy and hormone treatment. However, the total enzyme activity was increased by both dexamethasone (DEX) and thyroxine (T4) treatments. The activation of the particulate adenylate cyclase by the cytoplasmic factors was markedly decreased in the lung from hypophysectomized, adrenalectomized and thyroidectomized rats. This decrease in the cytoplasmic activation of adenylate cyclase was restored to or above the control values on hormone treatment. Alteration in the activation of enzyme by cytoplasmic factors did not appear to be due to the change in the responsiveness of the enzyme. Glucocorticoids appeared to have a specific effect on the cytoplasmic factors modulating the enzyme.  相似文献   

12.
13.
Mannitol bound to enzyme IImtl could be trapped specifically by rapid phosphorylation with P-HPr. The assay was used to demonstrate transport of mannitol across the cytoplasmic membrane with and without phosphorylation of mannitol. The latter was 2-3 orders of magnitude slower. The fraction of bound mannitol molecules that was actually phosphorylated, the efficiency of the trap, was less than 50%. The efficiency was not very different for enzyme IImtl embedded in the membrane of vesicles with an inside-out orientation or solubilized in detergent. Subsequently, it is argued that the fraction of the bound mannitol molecules that was not phosphorylated dissociated into the cytoplasmic space. A model for the catalytic mechanism of enzyme IImtl is proposed on the basis of interpretations of the present experiments. The main features of the model are the following: (i) mechanistically, the coupling between transport and phosphorylation is less than 50%; (ii) in the physiological steady state of mannitol transport and metabolism, the coupling is 100%; (iii) phosphorylated enzyme IImtl catalyzes facilitated diffusion at a high rate; (iv) the state of phosphorylation of the cytoplasmic domain modulates the activity of the translocator domain; (v) the enzyme catalyzes phosphorylation of free cytoplasmic mannitol at least as fast as it catalyzes transport plus phosphorylation of free periplasmic mannitol.  相似文献   

14.
The catalase-peroxidase hydroperoxidase I of Escherichia coli has been confirmed to be located in the cytoplasm using two independent methods. Catalase activity was found predominantly (> 95%) in the cytoplasmic fraction following spheroplast formation. The cytoplasmic enzyme glucose-6-phosphate dehydrogenase and the periplasmic enzyme alkaline phosphatase were used as controls. The second method of immunogold staining for the enzyme in situ revealed an even distribution of the enzyme across the cell.  相似文献   

15.
Glenn E 《Plant physiology》1977,60(1):122-126
The spatially separated forms of ornithine transcarbamoylase (EC 2.1.3.3) of different molecular weights coexist in sugarcane (Saccharum sp.). The smaller form of the enzyme (mol wt 79,000) appears to be cytoplasmic, while a larger form (mol wt 224,000) sedimented with mitochondria. The Km of the cytoplasmic enzyme for ornithine was 3.11 mm, while the enzyme in the mitochondrial fraction had a Km of 0.50 mm for this substrate; both enzymes had similar affinity for carbamoyl phosphate (0.12 mm). Characteristics of the smaller ornithine transcarbamoylase are in keeping with a predominantly catabolic function, those of the enzyme which sediments with mitochondria, with an anabolic function. Only the mitochondrial enzyme was regulated in vivo by exogenous arginine.  相似文献   

16.
1. The properties and distribution of the NAD-linked unspecific aldehyde dehydrogenase activity (aldehyde: NAD+ oxidoreductase EC 1.2.1.3) has been studied in isolated cytoplasmic, mitochondrial and microsomal fractions of rat liver. The various types of aldehyde dehydrogenase were separated by ion exchange chromatography and isoelectric focusing. 2. The cytoplasmic fraction contained 10-15, the mitochondrial fraction 45-50 and the microsomal fraction 35-40% of the total aldehyde dehydrogenase activity, when assayed with 6.0 mM propionaldehyde as substrate. 3. The cytoplasmic fraction contained two separable unspecific aldehyde dehydrogenases, one with high Km for aldehydes (in the millimolar range) and the other with low Km for aldehydes (in the micromolar range). The latter can, however, be due to leakage from mitochondria. The high-Km enzyme fraction contained also all D-glucuronolactone dehydrogenase activity of the cytoplasmic fraction. The specific formaldehyde and betaine aldehyde dehydrogenases present in the cytoplasmic fraction could be separated from the unspecific activities. 4. In the mitochondrial fraction there was one enzyme with a low Km for aldehydes and another with high Km for aldehydes, which was different from the cytoplasmic enzyme. 5. The microsomal aldehyde dehydrogenase had a high Km for aldehydes and had similar properties as the mitochondrial high-Km enzyme. Both enzymes have very little activity with formaldehyde and glycolaldehyde in contrast to the other aldehyde dehydrogenases. They are apparently membranebound.  相似文献   

17.
Preparations of sheep liver cytoplasmic aldehyde dehydrogenase obtained by published methods were found by analytical isoelectric focusing in the pH range 5--8 to contain 5--10% by weight of the mitochondrial aldehyde dehydrogenase. Under the conditions used the pI of the cytoplasmic enzyme is 6.2 and that of the mitochondrial enzyme 6.6. The mitochondrial enzyme can be removed from the preparation by selective precipitation of the cytoplasmic enzyme with (NH4)2SO4. Kinetic experiments and inhibition experiments with disulfiram show that the properties of the two sheep liver enzymes are so different that the presence of 10% mitochondrial enzyme in preparations of the cytoplasmic enzyme can introduce serious errors into results. Our results suggest that the presence of 10 microM-disulfiram in assays may completely inactivate the pure cytoplasmic enzyme. This result is in contrast with a previous report [kitson (1978) Biochem. U. 175, 83--90].  相似文献   

18.
1. Clear kinetic differences between cytoplasmic and mitochondrial forms of type-I cerebral hexokinase were demonstrated from experiments performed under identical conditions on three (cytoplasmic, bound mitochondrial and solubilized mitochondrial) preparations of the enzyme. 2. Whereas the Michaelis constant for glucose (KmGlc) was consistent, that for MgATP2- (KmATP) was lower in the cytoplasmic than in the two mitochondrial preparations. The substrate dissociation constants (KsGlc and KsATP) were both higher in the cytoplasmic than in the mitochondrial preparations. A further difference in the substrate kinetic patterns was that KmATP=KmATP for the cytoplasmic enzyme, in contrast with the mitochondrial enzyme, where KmATP was clearly not equal to KsATP [Bachelard et al. (1971) Biochem. J. 123, 707-715]. 3. Dead-end inhibition produced by N-acetyl-glucosamine and by AMP also exhibited different quantitative kinetic patterns for the two enzyme sources. Both inhibitions gave Ki values similar or equal to those of Ki' for the cytoplasmic activity, whereas Ki was clearly not equal to Ki' for the mitochondrial activity. 4. All of these studies demonstrated the similarity of the two mitochondrial activities (particulate and solubilized), which were both clearly different from the cytoplasmic activity. 5. The analysis gives a practical example of our previous theoretical treatment on the derivation of true inhibition constants. 6. The results are discussed in terms of the function of cerebral hexokinases.  相似文献   

19.
Testis and epididymis are known to have high amounts of angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1). We investigated the localization of the enzyme in these tissues by an immunofluorescent technique and found that the enzyme was localized in the spermatids and residual bodies in the Sertoli cells of the testis. Furthermore, the enzyme was shown to be present in the cytoplasmic droplet of epididymal sperm and also in detached cytoplasmic droplets in semen. The enzyme was not detected in the interstitium of testis and epididymis except for the endothelial cells of the vessel.  相似文献   

20.
The cytoplasmic malate dehydrogenase of Saccharomyces cerevisiae was radioactively labeled during its synthesis on a glucose-free derepression medium. After purification a sensitive radio-immunoassay for this enzyme could be developed. The assay showed that after the physiological, glucose-dependent 'catabolite inactivation' of cytoplasmic malate dehydrogenase an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of this reaction in vivo this finding strongly suggest a proteolytic mechanism of enzyme inactivation. For this process the term 'catabolite degradation' is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号