首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigates changes in the activity and enzyme content of ovarian carbonyl reductase (CR), which catalyzes the reduction of 9-keto and 15-ketoprostaglandins in rats during pseudopregnancy and pregnancy. The activity of ovarian CR decreased from the onset of pseudopregnancy and pregnancy, reaching 20-30% of the Day 1 value by Day 12 of pseudopregnancy and 50-60% of the Day 1 value by Day 14 of pregnancy. In the case of pregnant rats, the enzyme activity maintained a minimal level between Day 14 of pregnancy and Day 22 of parturition. An acute increase of the enzyme activity was found on the morning after parturition. The CR content in the ovary maintained a constant level from Day 1 to Day 12 of pseudopregnancy and to Day 18 of pregnancy. In pregnant rats, there was a gradual decrease after 18 days and then a surge during parturition. CR was primarily localized in interstitial gland cells and in theca interna cells but was not found in corpora lutea cells in the ovary during the estrous cycle. Additional immunostaining was also observed in corpora lutea cells during pseudopregnancy and pregnancy. The changes in ovarian CR activity, i.e. the rapid decrease with progressing pseudopregnancy and pregnancy, correlated with the increase in progesterone and the decrease in LH. These results indicate that rat ovarian CR may be regulated via the hypothalamo-pituitary-ovarian axis and may also be involved in luteal function.  相似文献   

2.
3.
Treatment of immature rats with 5 iu equine chorionic gonadotrophin (eCG) on day 25 typically stimulates a preovulatory surge of LH on day 27 and ovulation on day 28. In rats weighing > 60 g at the time of treatment, an LH surge and ovulation occurred in 75% of the animals but, in rats weighing < 60 g, only 13% ovulated even though 69% showed an LH surge. Previous findings have shown that exogenous LH can stimulate ovulation in the rats < 60 g, indicating that the anovulation was not due to ovarian immaturity, but rather to an abnormal form of LH. Thus, it was important to determine whether the bioactivity of LH released at the time of the surge differs in rats < 60 g compared with rats > 60 g. Experiments showed that LH from both groups of eCG-treated animals were equipotent in stimulating testosterone production from incubated Leydig cells and progesterone production from cultured granulosa cells. Similarly the surge of progesterone in vivo, which occurs co-incident with the LH surge, was of similar magnitude in both groups of animals. Since prostaglandin synthesis increases at the time of ovulation and is also stimulated by LH, it was investigated whether the activity of ovarian phospholipase A2, the rate limiting enzyme in prostaglandin synthesis, and ovarian prostaglandin E2 concentrations differed in the animals > 60 g and < 60 g. Phospholipase A2 activities were similar in both groups of animals at the time of the LH surge, as were the prostaglandin E2 concentrations. However, in all animals that ovulated (15/20 in rats > 60 g and 2/15 in rats < 60 g), there was a threefold increase in ovarian prostaglandin E2 concentrations. The results show that, in underweight animals, the bioactivity of LH, in terms of its ability to stimulate steroidogenesis and phospholipase A2 activity, is similar to that released by animals > 60 g; however, the LH produced by the underweight animals fails to induce ovulation by failing to increase, either directly or indirectly, prostaglandin E2 production. Comparison of the profiles of plasma LH collected at the time of the LH surge on an anionic ion exchange column indicates that the LH from rats < 60 g possesses significantly less of the neutral or basic glycoform of LH than that from rats > 60 g. This finding provides a further index that the biopotency of LH produced by underweight animals is different from that of rats > 60 g.  相似文献   

4.
N Inazu  N Inaba  T Satoh  T Fujii 《Life sciences》1992,51(11):817-822
We earlier reported that human chorionic gonadotropin (hCG) stimulates rat ovarian carbonyl reductase (CR) activity and content, and that estrogen enhances the stimulatory effect. The present study was performed to determine the mode of action of the gonadotropin. Cycloheximide (CHX) and actinomycin D (AD) were given to estradiol-pretreated immature rats 6 h before hCG treatment. The enzyme activity was measured with three substrates, and the enzyme content was determined by the method of Western-blot analysis using anti-rat ovarian CR anti-serum as the first antibody. Both protein inhibitors significantly prevented hCG from increasing the enzyme activity and content in estradiol-pretreated ovary. These results indicate that rat ovarian CR is induced by LH via the action of estrogen.  相似文献   

5.
Ovulation in light-estrous rats induced by darkness   总被引:1,自引:0,他引:1  
Adult female rats show continual vaginal cornification and cease ovulation a few weeks after they are exposed to continuous lighting (light-estrous rats). When these rats were placed in the darkness for 10 hr, 80% of the animal ovulated approximately 46 hr later. Peripheral LH increased to a small peak immediately after placing in darkness concomitant with a decrease in pituitary LH content; a large peak, 20 times higher than the basal LH level, was observed at 20 to 22 hr. Progesterone concentration in ovarian vein blood remained at extremely low levels while estrogen levels tended to rise after small LH peak. This estrogen rise appeared to play an important role in inducing the main LH peak. Simulation of the small LH peak by low doses of exogenous LH succeeded in inducing ovulation of light-estrous rats in similar fashion to the exposure of light-estrous rats to 10-hr darkness. Therefore, the small amount of LH secretion observed after the initiation of the darkness-treatment may be considered as a trigger for the whole sequence of hormonal changes leading to ovulation.  相似文献   

6.
The effect of a gonadotropin-releasing hormone (GnRH) agonist on luteinizing hormone (LH) receptor mRNA expression was examined histologically in the ovaries of immature hypophysectomized (HPX) rats by in situ hybridization. In the ovaries of HPX rats treated with diethylstilbestrol (DES) and pregnant mare serum gonadotropin (PMSG), LH receptor mRNA was expressed in the granulosa cells of mature follicles as well as the theca-interstitial cells. In DES-primed ovaries of rats treated with both GnRH agonist plus PMSG, many follicles were luteinized without ovulation, and the signal of LH receptor mRNA disappeared completely in the theca-interstitial cells as well as the luteinized cells, but remained in the granulosa cells of unaffected mature follicles. The complete suppression of the theca-interstitial LH receptor expression by GnRH agonist was also observed in HPX rats that received no other treatment. On the other hand, the coadministration of a GnRH antagonist with PMSG resulted in the hyperstimulation of follicular growth, accompanied by very strong expression of LH receptor mRNA in the granulosa cells as well as the thecainterstitial cells. In addition, morphological changes in the ovarian interstitial cells were also induced by the administration of GnRH agonist in HPX rats: loose connective tissue decreased and the interstitial cell mass markedly increased. The increase of the interstitial cells became more prominent when rats were treated with GnRH agonist and testosterone simultaneously. These results suggest that GnRH may be an important factor for modulating the interstitial cell function and differentiation in the rat ovary.  相似文献   

7.
The effects of androgen pretreatment on follicle-stimulating hormone (FSH)-stimulated luteinizing hormone (LH) receptor induction in ovarian granulosa cells was examined. Immature female rats were treated with various doses (0.1-5 mg/rat) of testosterone (T), 5 alpha-dihydrotestosterone (DHT), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-diol), or 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol). Subsequent follicular development was stimulated by treatment with ovine FSH. LH receptor induction in granulosa cells and ovulatory responses to 10 IU human chorionic gonadotropin (hCG) were examined. Since LH receptor induction requires the synergistic action of both FSH and estradiol, the effects of the androgen pretreatment on FSH-stimulated estradiol production were also examined. Dihydrotestosterone treatment at doses greater than 1 mg inhibited LH receptor induction by approximately 70%, which resulted in absent ovulatory responses. Treatment with 1 mg or more of T or 3 alpha-diol had no effect on LH receptor induction, yet the hCG-stimulated ovulation rate was reduced to 40% of that seen in vehicle-treated controls. 3 beta-Diol, at a dose of 1 mg/rat, did not affect LH receptor induction but did reduce hCG-stimulated ovulation responses. No significant effects of androgen treatment on ovarian or uterine weight or FSH-stimulated estradiol production were observed. These results suggest that androgens can act at multiple sites to inhibit ovarian follicular development and function. In addition these studies demonstrate that, although LH receptor induction is necessary, it may not be a sufficient condition to ensure ovulation of ovarian follicles.  相似文献   

8.
Regulation of the follicular hierarchy and ovulation   总被引:1,自引:0,他引:1  
Studies are discussed which investigate the regulation of follicular maturation and the ovulation sequence of the domestic hen. The number of FSH receptors of ovarian granulosa cells decreases as the follicle matures, and this decrease in receptor number is paralleled by a gradual loss of FSH-stimulable adenylyl cyclase (AC) activity. By contrast, LH-stimulable AC activity increases as the follicle progresses through the hierarchy. In addition, FSH stimulates progesterone secretion by granulosa cells of the smaller preovulatory follicles, whereas these cells are only minimally responsive to LH. These data suggest that the maturation of less mature (smaller) follicles is primarily controlled by FSH, while LH may serve primarily as the ovulation-inducing hormone. The ability of LH to stimulate progesterone release and induce premature ovulation is dependent upon the stage of the sequence. Injection of ovine LH 12 hr prior to ovulation of the first (C1) egg of the sequence induces fully potentiated preovulatory plasma progesterone surges and 100% premature ovulation, whereas injection prior to the second (C2) ovulation of the sequence fails to stimulate prolonged progesterone release and induces premature ovulation in less than 50% of injected hens. These results are consistent with data obtained in vitro which suggest that granulosa cells obtained 12 hr prior to a C1 ovulation secrete more progesterone in response to chicken LH compared to those obtained 12 hr prior to the C2 ovulation. These data are discussed in terms of the ovary's ability to act as a regulator of the ovulatory cycle.  相似文献   

9.
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a vital role in regulating cell growth and angiogenesis. In this study, the expression of the family of PDGFs and PDGFRs in the ovarian corpus luteum were identified and characterized, and an effect of their activity on development of the corpus luteum revealed. Gonadotropin-stimulated immature rats were utilized as a model of induced ovulation, luteogenesis, and pseudopregnancy. Levels of ovarian mRNA for Pdgfb and Pdgfd, and their receptor, Pdgfrb, increased significantly as early as 4 h after human chorionic gonadotropin (hCG) injection in immature rats primed with equine chorionic gonadotropin (eCG). Gonadotropin regulation of Pdgfb expression was confirmed by in vitro promoter-reporter assays, which showed a 2- to 3-fold increase in Pdgfb promoter activity in response to luteinizing hormone (LH). Inhibition studies implicated protein kinase A, phosphatidylinositol 3-kinase and mitogen activated protein kinase signaling pathways in the LH-induced upregulation. In the corpus luteum, PDGFA, PDGFB, PDGFC, and PDGFRA were localized to a population of luteal parenchymal/steroidogenic cells. PDGFRB was expressed primarily in what appeared to be cells of the luteal microvasculature. Intraovarian injection of an inhibitor of PDGF receptor activity, the tyrphostin AG1295, prior to injection of hCG in eCG-primed immature rats resulted in a significant 21.86%+/-11.15% decrease in corpora lutea per treated ovary in comparison to the contralateral vehicle-injected control ovary. In addition, the treated ovary of 3 of 16 rats showed widespread hemorrhage throughout the entire ovary, indicating a possible role for PDGF receptor activity in maintenance of the ovarian vasculature.  相似文献   

10.
The purpose of these experiments was to investigate the mechanism of the anovulatory action of antiprogesterone RU486 (RU486) in rats by studying its effects on follicular growth, secretion of gonadotropins and ovarian steroids, and ovulation. Rats with 4-day estrous cycles received injections (s.c.) of either 0.2 ml oil or 0.1, 1, or 5 mg of RU486 at 0800 and 1600 h on metestrus, diestrus, and proestrus. At the same times, they were bled by jugular venipuncture to determine serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), 17 beta-estradiol (E), and progesterone (P). On the morning of the day after proestrus, ovulation and histological features of the ovary were recorded. Rats from each group were killed on each day of ovarian cycle to assess follicular development. Rats treated similarly were decapitated at the time of the ovulatory LH surge and blood was collected to measure LH. The serum levels of LH increased and those of FSH decreased during diestrus in rats treated with RU486. Neither E nor P levels differed among the groups. Treatment with RU486 caused both a blockade of the ovulation and an increase in ovarian weight in a dose-dependent manner. At the time of the autopsy (the expected day of ovulation), rats treated with 1 mg RU486 had ovaries presenting both normal and post-ovulatory follicles and unruptured luteinized follicles. Rats treated with 5 mg RU486 presented post-ovulatory follicles without signs of luteinization. The number of follicles undergoing atresia increased in rats treated with RU486. Rats treated with 5 mg RU486 exhibited a significant decrease in ovulatory LH release. The mechanism by which RU486 produces the ovulatory impairment in rats seems to be dual: first, by inducing inadequate follicular development at the time of the LH surge and second, by reducing the amount of ovulatory LH released. The physiological events-decreased basal FSH secretion and follicular atresia-that result from use of RU486 cannot be elucidated from these experiments and should be investigated further.  相似文献   

11.
The effect of p-chlorophenylalanine (PCPA: 300 mg/kg) on the rate of ovulation and plasma LH, FSH and prolactin secretion has been studied in rats at preovulatory periods (18th hour of diestrus) and post-ovulatory periods (9th hour of metaestrus). In both experimental groups, results showed that administration of PCPA caused an increase in both prolactin concentration and number of mature ovarian follicles (p less than 0.001). No changes were observed in FSH levels. LH concentration, however, decreased (p less than 0.001) and ovulation became totally inhibited. Rats treated at the 9th hour of metaestrus exhibited a marked luteinization as well as an increased number of corpus luteum in the ovaric tissue (p less than 0.001), whereas those treated at the 18th hour of diestrus underwent no luteinization and merely showed a greater number of mature ovarian follicles (p less than 0.001). PCPA, therefore, seems not to have a double effect on ovulation, LH, FSH, and prolactin secretion regardless of the pre or post-ovulatory periods. Changes observed in the ovaric tissue might be due to an increase in plasma prolactin concentration which appears earlier in the preovulatory than in the post-ovulatory treated animals. This difference may explain the double effect that has been attributed to the ovaric cycle and reproductive behavior.  相似文献   

12.
Summary 1. In the rat, the LH-dependent ovarian progesterone rise mediates several actions of the primary surge of LH on the ovary. This experiment was aimed at elucidating the effects of the antiprogestagen RU486 on the LH-dependent decrease in both the serum concentrations and the ovarian content of inhibin.2. All rats in this experiment were treated with an antagonist of LHRH (1 mg/200 µl saline at 0800 h in proestrus) to supress the endogenous release of LH. One group of rats received 32 µg LH/250 µl saline at 1200 h in proestrus. Other group was given 4 mg RU486/200 µl oil at 0800 h in proestrus. The third group was injected with both RU486 and LH. Rats from the control group were injected with 250 µl saline and 200 µl oil. Animals were decapitated at 1700 h in proestrus and trunk blood and ovaries collected to determine the serum concentrations of LH, FSH, progesterone, 17ß-estradiol and inhibin as well as the ovarian content of inhibin.3. The ovulatory dose of LH in LHRHa-treated rats decreased both the serum concentrations and the ovarian content of inhibin and increased the serum concentrations of FSH. The administration of RU486 blocked the effect of LH on the serum concentrations of inhibin but not that on the ovarian content of inhibin.4. Since the antiprogestagen RU486 blocked the effect of LH on the serum concentrations of inhibin, we conclude that ovarian progesterone, besides mediating the effects of the primary LH surge on the ovulatory process and luteinization, participates in the LH-dependent drop in the serum concentrations of inhibin in proestrous afternoon.  相似文献   

13.
Immature female rats were infused s.c. continuously over a 60-h period with a partially purified porcine pituitary follicle-stimulating hormone (FSH) preparation having FSH activity 4.2 x NIH-FSH-S1 and luteinizing hormone (LH) activity 0.022 x NIH-LH-S1. High rates of superovulation were observed in rats receiving 1 U FSH/day, with 69 +/- 11 oocytes/rat recovered as cumulus-enclosed oocytes from oviducts on Day 1 (equivalent to the day of estrus). Addition of LH to the FSH, at dosages equivalent to 2.5-100 micrograms/day NIH-LH-S1 equivalents (2.5-100 mU) resulted in a dose-related inhibition of superovulation, reaching a nadir of 15 +/- 7 oocytes recovered from rats receiving 50 mU LH/day together with 1 U FSH/day. At the two highest LH doses, 50 and 100 mU/day, ovulation was advanced so that 12 +/- 3 and 15 +/- 4 oocytes, respectively, were recovered from oviducts of these rats flushed on the morning of Day 0, compared to none in rats infused with FSH alone. Ovarian steroid concentrations (ng/mg) observed on the morning of Day 0 in rats infused with FSH alone were progesterone, 0.50 +/- 0.13; testosterone, 0.16 +/- 0.08; androstenedione, 0.06; and estradiol, 0.23 +/- 0.05. On the morning of Day 1, ovarian progesterone concentrations in rats infused with FSH alone had risen to 3.30 +/- 0.33 ng/mg, whereas concentrations of testosterone, androstenedione, and estradiol, had fallen to essentially undetectable levels. Addition of LH to the FSH infusion resulted in dose-related increases, on Day 0, of all four steroids up to a dosage of 25 mU LH/day. At higher LH dosages, Day 0 ovarian concentrations of androgens and estradiol fell markedly, while progesterone concentrations continued to increase. Histological examination of ovaries revealed increases in the extent of luteinization of granulosa cells in follicles with retained oocytes on both Days 0 and 1 in rats infused with 25 and 50 mU LH/day together with 1 U FSH/day, compared to those observed in rats receiving FSH alone. These findings indicate that the elevated progesterone levels on Day 0 and inhibition of ovulation observed at these LH doses were due to premature luteinization of follicles, thus preventing ovulation. At lower LH doses, no sign (based on histologic or steroidogenic criteria) of premature luteinization was evident, suggesting that the decreased superovulation in these rats was due to decreased follicular maturation and/or increased atresia rather than to luteinization of follicles without ovulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Oestradiol injection on Day 10 of pregnancy in rats, resulted in either ovulation or luteinization in 50% of cases on Day 12. Cytological data showed that the number of pituitary LH cells decreased significantly on Day 11 in all oestradiol-treated animals whether responsive or not to oestrogen by ovarian modifications, while the number of pituitary FSH cells only decreased significantly in females with characteristic ovarian signs of preovulation. Bioassay of pituitary FSH confirmed the cytological data. It is concluded that ovulation and luteinization only occurred in the pregnant rat when oestradiol triggered off a synchronous release of LH and FSH.  相似文献   

15.
In the human polycystic ovarian syndrome, glucocorticoids have been demonstrated to have beneficial effects in inducing ovulation in a number of cases. These beneficial effects were assumed to be due to suppression of adrenal overproduction of androgens. However, the possibility exists that glucocorticoids may directly regulate gonadotropin secretion and thereby improve menstrual rhythm and ovulatory activity. Herein, we report that the corticoid, deoxycorticosterone, and the synthetic glucocorticoid, triamcinolone acetonide, like progesterone (P4), are able to induce luteinizing hormone and follicle-stimulating hormone surges and facilitate ovulation in the pregnant mare serum gonadotropin-primed rat. This effect is not shared by cortisol. Prolactin release was also stimulated by deoxycorticosterone, cortisol, and progesterone, but not by triamcinolone acetonide. Similar to progesterone, triamcinolone acetonide and deoxycorticosterone administration caused a loss of fluid retention in the uterus. This effect of triamcinolone acetonide and deoxycorticosterone may be related to progesterone action as opposed to anti-inflammatory action since cortisol had no effect on uterine fluid retention. These findings raise the possibility that the beneficial effects seen with glucocorticoids in inducing ovulation in polycystic ovarian syndrome may be due in part to their direct effects upon the release of gonadotropins.  相似文献   

16.
Established gap junctional communication (GJC) in the ovarian follicle is essential for maintaining the oocytes in meiotic arrest. Alternatively, LH-induced reinitiation of meiosis is subsequent to breakdown of GJC. It was recently reported that nitric oxide (NO) inhibits maturation in rat follicle-enclosed oocytes and elevates GJC in cultured mesangial cells. Taking these observations into account, we hypothesized that NO prevents reinitiation of meiosis by antagonizing the effect of LH on GJC in the ovarian follicle. Indeed, we found that NO interferes with LH-induced disruption of GJC as well as with the decrease of the expression of the gap junction protein GJA1 (previously known as CONNEXIN43). We also demonstrated that NO prevents activation of LH-induced mitogen-activated protein kinases (MAPKs) 1 and 2 and inhibits cumulus expansion. Along this line, incubation of ovarian follicles with an inhibitor of soluble guanylate cyclase, which is a downstream NO effector, induced on its own oocyte maturation as well as cumulus expansion. Unlike previous studies, we show here that elevation of NO resulted in inhibition of ovulation. We conclude that the mechanism by which NO inhibits LH-induced oocyte maturation possibly involves a negative effect on MAPK activation and, in turn, interference with interruption of GJC. This action of NO in the ovarian follicle is apparently mediated by cGMP. In addition, the negative effect of NO on ovulation may be subsequent to its inhibitory effect on cumulus expansion. Together, this study suggests that the preovulatory decrease in NO concentrations is a prerequisite for the ovarian response to LH.  相似文献   

17.
Carbonyl reductase activity and content in the rat ovary were measured at various stages of the estrous cycle, and the enzyme protein in the ovary was localized by immunohistochemistry. The enzyme activity increased after the preovulatory surge of luteinizing hormone (LH) on proestrus, and the enzyme content began to increase prior to the LH surge. Although the enzyme content reached the highest level at 2000 h and remained at a plateau for 8 h, the enzyme activity increased linearly until it reached the highest level at 0800 h on the morning of estrus. At their maximum, enzyme activity and content were approximately 1.5-fold and 2-fold greater, respectively, then basal diestrus values. The enzyme protein amounted to 1-4% of the ovarian cytosolic protein. An immunohistochemical study revealed that the enzyme was primarily localized in interstitial gland cells and theca interna cells of secondary and Graafian follicles as well as atretic follicles.  相似文献   

18.
Electrochemical stimulation of the hypothalamus of 23-day-old female rats induced precocious puberty as judged by occurrence of vaginal opening, the degree of uterine hypertrophy, changes in ovarian steroid content and incidence of first ovulation. Three types of responses were observed: (I) pubertal ovulation within 96 h; (II) pubertal ovulation within 120 h, and (III) vaginal opening at 120 h not followed by ovulation. All treated animals showed a sustained increase in the LH/FSH ratio in both pituitary and plasma. Plasma estrogen was also increased 1 h after stimulation. A preovulatory rise in plasma estrogen and gonadotropins was noted in type I and type II animals. These data lend further support to the suggestion that brain stimulation causes a release of gonadotrophins which induced ovarian steroidogenesis leading to an ovulatory gonadotropin surge via a positive feedback effect.  相似文献   

19.
The high amounts of 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) present in immature female rats decline towards first ovulation, but on the day of first proestrus a peak is seen. This raises the possibility that during adulthood similar proestrous peaks may occur. Therefore, serum concentrations and ovarian content of 3 alpha-diol were estimated every two hours between 0900 and 2100 h in adult cyclic rats on the day of proestrus. In the same rats, serum concentrations of estradiol (E2), progesterone (P) and luteinizing hormone (LH) were measured, as were ovarian contents of E2 and P. A significant elevation in ovarian 3 alpha-diol was found between 0900 and 1700 h proestrus, whereas serum concentrations of 3 alpha-diol were elevated from 1300 to 2100 h. The high morning values of ovarian 3 alpha-diol correlated with those for ovarian E2 (p less than 0.005); the elevated serum concentrations of 3 alpha-diol during the afternoon correlated with serum P (p less than 0.005) and with serum LH concentrations (p less than 0.005). Serum and ovarian values were positively correlated for P and E2, but not for 3 alpha-diol. The rise in serum 3 alpha-diol could be prevented by blocking the LH surge with sodium pentobarbitone (Nembutal; 35 mg/kg b.w.) administered at 1300 h. In Nembutal-treated rats, the concentration of 3 alpha-diol at 1700 h (886 pg/ml) was significantly lower than in saline-treated control rats (1135 pg/ml; p less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The preovulatory LH surge induces a remarkable increase in ovarian prostaglandins (PGs) which help to mediate the ovulatory process. We investigated whether cytosolic phospholipase A2 (cPLA2) has a role in this PG production in PMSG/hCG-primed immature rats. The immunoreactive signal for cPLA2 was localized in both thecal and granulosa layers of mature follicles and became evident in response to gonadotropins. The PLA2 activity in the whole ovarian cytosol rose slightly after PMSG stimulation, persisted relatively constant until 24 h after hCG injection and thereafter increased gradually. Intra-ovarian bursal injection of arachidonyl trifluoromethyl ketone, a specific inhibitor for cPLA2 ( 1.0-3.0 mg/ovary), significantly reduced ovarian PGE2 content and the ovulation rate. These results suggest that cPLA2 exists in periovulatory follicles and functions in PG production related to the ovulation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号