首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
CodY, a global regulator of gene expression in low G + C Gram-positive bacteria, was found to repress toxin gene expression in Clostridium difficile. Inactivation of the codY gene resulted in derepression of all five genes of the C. difficile pathogenicity locus during exponential growth and stationary phase. CodY was found to bind with high affinity to a DNA fragment containing the promoter region of the tcdR gene, which encodes a sigma factor that permits RNA polymerase to recognize promoters of the two major toxin genes as well as its own promoter. CodY also bound, but with low affinity, to the toxin gene promoters, suggesting that the regulation of toxin gene expression by CodY occurs primarily through direct control of tcdR gene expression. Binding of CodY to the tcdR promoter region was enhanced in the presence of GTP and branched-chain amino acids, suggesting a link between nutrient limitation and the expression of C. difficile toxin genes.  相似文献   

6.
Competition between sigma factors for core RNA polymerase.   总被引:4,自引:0,他引:4       下载免费PDF全文
The switch of RNA polymerase specificity from early to late promoters of bacteriophage T4 is achieved by substitution of host sigma factor, sigma 70, with the T4 induced factor, sigma gp55. However, overproduction of sigma gp55 from an expression vector is not detrimental to Escherichia coli growth. Direct competition binding assays demonstrate that sigma 70 readily displaces sigma gp55 from RNA polymerase and thereby reverses the promoter specificity of the enzyme. The displacement also occurs with the core enzyme modified by bacteriophage T4 infection. We postulate that an antagonist of sigma 70 should be formed in T4-infected cells to aid sigma gp55 in the early/late switch.  相似文献   

7.
8.
The intracellular levels of two principal sigma subunits, sigma 70 (sigma D, the rpoD gene product) and sigma 38 (sigma s, the rpoS gene product), in Escherichia coli MC4100 were determined by a quantitative Western immunoblot analysis. Results indicate that the level of sigma 70 is maintained at 50 to 80 fmol per micrograms of total proteins throughout the transition from the exponential growth phase to the stationary phase, while the level of sigma 38 protein is below the detection level at the exponential growth phase but increases to 30% of the level of sigma 70 when cell growth stops to enter into the stationary phase. Beside the stationary phase, the increase in sigma 38 level was observed in two cases: exposure to heat shock at the exponential phase and osmotic shock at the stationary phase.  相似文献   

9.
10.
11.
12.
13.
14.
The presence of glucose or other rapidly metabolizable carbon sources in the bacterial growth medium strongly represses Clostridium difficile toxin synthesis independently of strain origin. In Gram-positive bacteria, carbon catabolite repression (CCR) is generally regarded as a regulatory mechanism that responds to carbohydrate availability. In the C. difficile genome all elements involved in CCR are present. To elucidate in vivo the role of CCR in C. difficile toxin synthesis, we used the ClosTron gene knockout system to construct mutants of strain JIR8094 that were unable to produce the major components of the CCR signal transduction pathway: the phosphotransferase system (PTS) proteins (Enzyme I and HPr), the HPr kinase/phosphorylase (HprK/P) and the catabolite control protein A, CcpA. Inactivation of the ptsI, ptsH and ccpA genes resulted in derepression of toxin gene expression in the presence of glucose, whereas repression of toxin production was still observed in the hprK mutant, indicating that uptake of glucose is required for repression but that phosphorylation of HPr by HprK is not. C. difficile CcpA was found to bind to the regulatory regions of the tcdA and tcdB genes but not through a consensus cre site motif. Moreover in vivo and in vitro results confirmed that HPr-Ser45-P does not stimulate CcpA-dependent binding to DNA targets. However, fructose-1,6-biphosphate (FBP) alone did increase CcpA binding affinity in the absence of HPr-Ser45-P. These results showed that CcpA represses toxin expression in response to PTS sugar availability, thus linking carbon source utilization to virulence gene expression in C. difficile.  相似文献   

15.
The sigma F RNA polymerase has been characterized biochemically and is known to transcribe several flagellar genes in Escherichia coli. It was found that while the flagellar regulatory genes flhD and flhC are required for sigma F activity, the sizes of their corresponding gene products are inconsistent with their encoding sigma F itself.  相似文献   

16.
17.
R F Troxler  F Zhang  J Hu    L Bogorad 《Plant physiology》1994,104(2):753-759
Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae.  相似文献   

18.
19.
Two genes from Clostridium acetobutylicum DSM 792 were identified which are predicted to encode new members of the ECF subfamily of eubacterial RNA polymerase sigma factors. The sigX gene has the potential to encode a 184-amino acid protein with a molecular mass of 21,870 Da and with the highest overall similarity to Fecl of Escherichia coli (27 % identical residues). The second gene, which is predicted to encode an alternative sigma factor of the ECF subfamily, is the previously described orf2 gene (Gerischer and Dürre, 1990) located in the adc gene region of C. acetobutylicum. The deduced protein of orf2 has significant similarity to SigX of C. acetobutylicum (22 % identical residues) and shares structural features with other alternative sigma factors. Therefore, it is proposed to rename orf2 as sigY. Analysis of the phylogenetic relationship revealed that SigX from C. acetobutylicum, together with sigmaE from Streptomyces coelicolor and SigX from Bacillus subtilis, form a gram-positive cluster within the ECF subfamily and that SigY from C. acetobutylicum together with UviA from Clostridium perfringens, form a separate cluster located between the gram-positive cluster and the sporulation sigma factor sigmaH from B. subtilis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号