首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyrenedecanoic acid and pyrene lecithin are optical probes well suited to investigate lipid bilayer membranes. The method is based on the determination of the formation of excited dimers or excimers. The rate of excimer formation yields information on the dynamic molecular properties of artificial as well as of natural membranes. This article will review applications of the excimer-forming probes.Pyrene lipid probes are used to determine the coefficient of the lateral diffusion in fluid lipid membranes. Results in artificial membranes are comparable to the values obtained in erythrocyte membranes.Moreover, the excimer formation rate is a very sensitive measure of changes in membrane fluidity. Membrane fluidity is an important regulator of membrane functional proteins. For example, there is a correlation between membrane fluidity and enzyme activities of the adenylate cyclase system.The excimer formation technique is not restricted to the measurement of lateral mobility in membranes. It can also be used to determine the transversal mobility, that is, the lipid exchange between the lipid layers of one bilayer or between bilayers of different vesicles. Again, artificial as well as natural membranes can be investigated by this technique.Another important area of investigation in membrane research is the interaction between lipids and proteins. Lipids, in the presence of a protein, show a different dynamic behavior from free lipids. Because of changes in fluidity and a modified solubility of the pyrene probes within different membrane regions, our methods could also be applied to the examination of phase separation phenomena and to lipid-protein interactions.  相似文献   

2.
The excimer-to-monomer fluorescence emission intensity ratio (IE/IM) of the fluorescent probe 1-palmitoyl-2-[(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC, 1 mol%) was measured at 30 degrees C as a function of the thickness of fluid liposomal membranes composed of phosphatidylcholines (PCs) with homologous monounsaturated acyl chains of varying lengths N (= number of carbon atoms). Upon decreasing N from di-24:1 PC to di-14:1 PC, the rate of excimer formation was sigmoidally augmented from 0.02 to 0.06. This increase in IE/IM can arise either from enhanced lateral mobility or from the lateral enrichment of PPDPC into domains, or both. Direct evidence for partial lateral segregation of PPDPC being involved is provided by experiments where 1.6 mol% of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamino-N- (5-fluoresceinthiocarbamoyl) (DPPF) was included together with PPDPC into the bilayers. Notably, because of spectral overlap DPPF can function as a resonance energy transfer acceptor for pyrene excimer. Fluorescence intensity ratio (F/Fo) measured at 480 nm for PPDPC/DPPF (yielding F) and PPDPC (yielding Fo) containing membranes as a function of N reveals a sharp maximum for di-20:1 PC, i.e., the quenching of pyrene excimer fluorescence by DPPF is least efficient in this lipid and is enhanced upon either decrease or increase in N. This is compatible with colocalization of DPPF in PPDPC enriched domains when N not equal to 20, whereas in di-20:1 PC these probes appear to be effectively dispersed. The driving force for the enrichment of PPDPC in thin (N < 20) and thick (N > 20) PC matrices is likely to be hydrophobic mismatch of the effective ¿lengths of the matrix phospholipids and the fluorescent probes. We also measured fluorescence polarization (P) for 1,6-diphenyl-1,3,5-hexatriene (DPH) as well as the IE/IM for the intramolecular excimer forming probe 1,2-bis[(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (bisPDPC) as a function of N. In brief, neither the fluorescence polarization data and nor the measurements of intramolecular chain dynamics using bisPDPC concur with enhanced lateral diffusion as the sole cause for the increase in the IE/IM for PPDPC in thin membranes. Our findings suggest hydrophobic mismatch as the cause of microdomain formation of lipids in fluid, liquid crystalline bilayers, while simultaneously allowing for a high rates of lateral diffusion. Such hydrophobic mismatch-induced compositional fluctuations would also offer one plausible explanation for the chain length diversity observed for biological membranes.  相似文献   

3.
We have measured the pressure dependence of the intramolecular excimer formation rate, K(p), for di-(1'-pyrenedecanoyl)-phosphatidylcholine (dipy10PC) probes in single-component lipid multilamellar vesicles (MLV) as a function of temperature. Apparent volumes of activation (V(a)) for intramolecular excimer formation are obtained from the slopes of plots of log K(p) versus P. For liquid-crystalline saturated lipid MLV (DMPC and DPPC), these plots are linear and yield a unique V(a) at each temperature, whereas for unsaturated lipids (POPC and DOPC) they are curvilinear and V(a) appears to decrease with pressure. The isothermal pressure induced phase transition is marked by an abrupt drop in the values of K(p). The pressure to temperature equivalence values, dPm/dT, estimated from the midpoint of the transitions, are 47.0, 43.5, and 52.5 bar degree C-1 for DMPC, DPPC, and POPC, respectively. In liquid-crystalline DMPC, V(a) decreases linearly as a function of temperature, with a coefficient -dVa/dT = 0.65 +/- 0.11 ml degree C-1 mol-1. Using a modified free volume model of diffusion, we show that this value corresponds to the thermal expansivity of DMPC. Both the apparent energy and entropy of activation, Ea and delta Sa, increase with pressure in DMPC, whereas both decrease in POPC and DOPC. This difference is attributed to the sensitivity of the dynamics and/or packing of the dipy10PC probes to the location of the cis-double bonds in the chains of the unsaturated host phospholipids. Finally, the atmospheric pressure values of Ea and delta Sa for the four host MLV examined are shown to be linearly related. The relevance of this finding with respect to the structure of the excimers formed by the dipy10PC probes is briefly discussed.  相似文献   

4.
M E Jones  B R Lentz 《Biochemistry》1986,25(3):567-574
Pyrene-labeled phospholipids have been used to test for the existence of lateral domains due to temperature-induced phase separations and binding of prothrombin fragment 1 to charged lipid vesicles. When in close proximity, pyrene-containing probes can exchange excited-state energy to form excimers; the ratio of the excimer to monomer fluorescence intensity (E/M) is proportional to the local concentration of probe in the membranes, as well as to the excimer lifetime and the probe's lateral diffusion coefficient. The ability of the pyrene-labeled phospholipids to quantitatively report the coexistence of multiple environments was demonstrated in dipalmitoylphosphatidylcholine/palmitoyloleoylphosphatidylcholine multilamellar vesicle preparations of varying compositions, each of which contained coexisting fluid and gel phases. In this system, pyrene-labeled phosphatidylcholine was found to favor the fluid relative to the gel phase with a partition coefficient of 7. At 37 degrees C, in dioleoylphosphatidylglycerol (DOPG)/palmitoyloleoylphosphatidylcholine (POPC) large, unilamellar vesicles containing either pyrene-labeled phosphatidylglycerol (py-PG) or pyrene-labeled phosphatidylcholine (py-PC), the excimer lifetime (37 ns) and the lateral diffusion constant of the probe (5.8 X 10(-8) cm2/s) were independent of the membrane composition and the presence of fragment 1 and Ca2+. Consequently, E/M was directly proportional to only the local concentration of the py-PG or py-PC probes. When saturating amounts of fragment 1 and 5 mM Ca2+ were added to DOPG/POPC vesicles that contained either probe, no change in E/M and hence the local probe concentration was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

6.
In the intramolecular excimeric membrane probe, dipyrenylphosphatidylcholine (dipyn PC), pyrene moieties are linked to the terminal carbons of the two acyl chains, each of which contains n carbons. We show here how the probe intramolecular excimer production rate, K, may be determined from the excimer/monomer intensity ratio, rl, by making use of the fluorescence titrations of the related monopyrenyl probe, pyn PC, analyzed according to the milling crowd model. rl and the rate K of dipy10 PC in four model membrane systems were measured over a wide temperature range and both parameters are shown to be sensitive functions of the lateral fluidity of the host matrix. A model for relating the intramolecular and intermolecular excimer formation rates is proposed according to which both processes are limited by the reorientational rate of the pyrene moiety. Above the fluid-gel transition temperature, Tc, the diffusion rate (f) of the monopyrenyl probe (pyn PC) is accordingly related to K by: pE approximately K/(K + 1/2f + tau -1M), where pE is the probability of excimer formation between nearest neighbor pyn PC probes, and tau M is the monomer lifetime. Values of pE derived in this way are found to be consistent with pE values derived from the milling crowd analysis of fluorescence yield titration experiments. K for dipy10 PC in DMPC multibilayers ranges from 0.21 x 10(7) s-1 at 10 degrees C in the gel phase, to 5.7 x 10(7) s-1 at 60 degrees C in the fluid phase, whereas the lateral diffusion coefficient, D, for py10 PC in the same bilayers ranged from 8 to 34 microns2 s-1, when calculated with D = fL2/4, L being the average lipid-lipid spacing of the host membrane. Above Tc and at the same reduced temperature, (T - Tc)/Tc, both f for py10 PC, and K for dipy10 PC were found to have relative magnitudes in the order: DPPC greater than DMPC greater than POPC greater than DOPC. This and the similarity of the activation energies for f and K suggest that the rotation of the the pyrene moiety is the rate-limiting step for both the lateral mobility of py10 PC and intramolecular excimer formation in dipy10 PC.  相似文献   

7.
The binding of polymyxin-B to lipid bilayer vesicles of synthetic phosphatidic acid was studied using fluorescence, ESR spectroscopy and electron microscopy. 1,6-Diphenylhexatriene (which exhibits polarized fluorescence) and pyrene decanoic acid (which forms excimers) were used as fluorescence probes to study the lipid phase transition. The polymyxin binds strongly to negatively charged lipid layers. As a result of lipid/polymyxin chain-chain interactions, the transition temperature of the lipid. This can be explained in terms of a slight expansion of the crystalline lipid lattice (Lindeman's rule). Upon addition of polymyxin to phosphatidic acid vesicles two rather sharp phase transitions (width deltaT = 5 degrees C) are observed. The upper transition (at Tu) is that of the pure lipid and the lower transition (at T1) concerns the lipid bound to the peptide. The sharpness of these transitions strongly indicates that the bilayer is characterized by a heterogeneous lateral distribution of free and bound lipid regions, one in the crystalline and the other in the fluid state. Such a domain structure was directly observed by electron microscopy (freeze etching technique). In (1 : 1) mixtures of dipalmitoyl phosphatidic acid and egg lecithin, polymyxin induces the formation of domains of charged lipid within the fluid regions of egg lecithin. With both fluorescence methods the fraction of lipid bound to polymyxin-B as a function of the peptide concentration was determined. S-shaped binding curves were obtained. The same type of binding curve is obtained for the interaction of Ca2+ with phosphatidic acid lamellae, while the binding of polylysine to such membranes is characterized by a linear or Langmuir type binding curve. The S-shaped binding curve can be explained in terms of a cooperative lipid-ligand (Ca2+, polymyxin) interaction. A model is proposed which explains the association of polymyxin within the membrane plane in terms of elastic forces caused by the elastic distortion of the (liquid crystalline) lipid layer by this highly asymmetric peptide.  相似文献   

8.
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), a minor component of the plasma membrane, is important in signal transduction, exocytosis, and ion channel activation. Thus fluorescent probes suitable for monitoring the PI(4,5)P(2) distribution in living cells are valuable tools for cell biologists. We report here three experiments that show neomycin labeled with either fluorescein or coumarin can be used to detect PI(4,5)P(2) in model phospholipid membranes. First, addition of physiological concentrations of PI(4,5)P(2) (2%) to lipid vesicles formed from mixtures of phosphatidylcholine (PC) and phosphatidylserine (PS) enhances the binding of labeled neomycin significantly (40-fold for 5:1 PC/PS vesicles). Second, physiological concentrations of inositol-1,4,5-trisphosphate (10 microM I(1,4,5)P(3)) cause little translocation of neomycin from PC/PS/PI(4,5)P(2) membranes to the aqueous phase, whereas the same concentrations of I(1,4,5)P(3) cause significant translocation of the green fluorescent protein/phospholipase C-delta pleckstrin homology (GFP-PH) constructs from membranes (Hirose et al., Science, 284 (1999) 1527). Third, fluorescence microscopy observations confirm that one can distinguish between PC/PS vesicles containing either 0 or 2% PI(4, 5)P(2) by exposing a mixture of the vesicles to labeled neomycin. Thus fluorescently labeled neomycin could complement GFP-PH constructs to investigate the location of PI(4,5)P(2) in cell membranes.  相似文献   

9.
Human erythrocyte ghost membranes have been investigated using two intramolecular excimer probes, di(1-pyrenyl)propane and di(1-pyrenylmethyl) ether. Values for the viscosity of the direct probe environment in the ghost membranes range from 76 cP at 37°C to 570 cP at 5°C, as reported for di(1-pyrenyl)propane, with liquid paraffin as the reference solvent. For the activation energy of the excimer formation process, determined here mainly by the viscosity of the medium, a value of 37 kJ/mol is obtained. The other probe molecule reports a higher local viscosity, 133 cP at 37°C, as well as a higher activation energy of excimer formation, 54 kJ/mol. Neither thermotropic phase transitions nor temperature hysteresis effects are observed within the temperature range (0 to 40°C) studied. From the vibrational structure of the fluorescence spectrum of di(1-pyrenylmethyl) ether, a polarity of the probe environment close to that of hexanol (? = 13.3) results for the erythrocyte ghost membranes. The polarity measured in egg phosphatidylcholine membranes and in multibilayers of dimyristoylphosphatidylcholine is slightly larger, comparable to that of butanol (? = 17.5), whereas a polarity comparable to that of methanol (? = 32.7) is observed for aqueous micellar solutions of sodium dodecyl sulphate. Further, from the wavelength shifts in the absorption spectrum of di(1-pyrenyl)propane and di(1-pyrenylmethyl) ether, the polarizability of the probe surroundings can be determined, leading to a surprisingly high value for the apparent refractive index. This is attributed to a high local density of the direct environment of the probe, for which a location between the membrane/water interface and the unpolar bilayer mid-plane is deduced.  相似文献   

10.
The effect of amphotericin B on the proton/hydroxide permeability of small unilamellar vesicles has been investigated by using potential-dependent paramagnetic probes. Amphotericin B at 1-10 molecules/vesicle causes a modest 4-8-fold increase in the background H+/OH- permeability of egg phosphatidylcholine (egg PC) vesicles. However, in the presence of cholesterol, amphotericin B promotes a dramatic increase in the H+/OH- permeability of more than 2 orders of magnitude. Surprisingly, this is not observed in vesicle membranes containing ergosterol. In membranes composed of 5-15 mol% ergosterol, amphotericin B is even less effective at promoting H+/OH- currents than in pure egg PC vesicles. The K+ current promoted by amphotericin B in vesicles formed from egg PC and from egg PC plus cholesterol or ergosterol was measured. No significant sterol dependence was found for the K+ current. These results strongly suggest that different mechanisms, or amphotericin B/sterol complexes, are responsible for the induction of H+/OH- and K+ currents. These results have important implications for understanding the therapeutic and toxic effects of amphotericin B.  相似文献   

11.
Experiments directed to measure the interaction of lysozyme with liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) have been conducted by monitoring both protein and lipid fluorescence and fluorescence anisotropy of the protein. The binding of lysozyme to the unilamellar vesicles was quantified using a novel method of analysis in which the fractional contribution at moderate binding conditions is determined from either total fluorescence decay or anisotropy decay curves of tryptophan at limiting binding conditions. In the energy transfer experiments PC and PS lipids labelled with two pyrene acyl chains served as energy acceptors of the excited tryptophan residues in lysozyme. The binding was strongly dependent on the molar fraction of negatively charged PS in neutral PC membranes and on the ionic strength. Changes in the tryptophan fluorescence decay characteristics were found to be connected with long correlation times, indicating conformational rearrangements induced by binding of the protein to these lipid membranes. The dynamics of membrane bound protein appeared to be dependent on the physical state of the membrane. Independent of protein fluorescence studies, formation of a protein-membrane complex can also be observed from the lipid properties of the system. The interaction of lysozyme with di-pyrenyl-labelled phosphatidylserine in anionic PS/PC membranes resulted in a substantial decrease of the intramolecular excimer formation, while the excimer formation of dipyrenyl-labelled phosphatidylcholine in neutral PC membranes barely changed in the presence of lysozyme.Abbreviations dipyr4 sn-1,2-(pyrenylbutyl) - dipyr10 sn-1,2-(pyrenyldecanoyl). - DMPC dimyristoyl-phosphatidylcholine - DOPC dioleoyl-phosphatidylcholine - DPPC dipalmitoyl-phosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - PC phosphatidylcholine - PS phosphatidylserine Correspondence to: A. J. W. G. Visser  相似文献   

12.
The regulation of human plasma lecithin:cholesterol acyltransferase (LCAT) by changes in bilayer fluidity of substrate egg phosphatidylcholine (egg PC) unilamellar vesicles was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity was decreased by adding up to 20% cholesterol or increased by adding up to 10% egg 2-lysophosphatidylcholine (lysoPC). The fluidizing effect of lysoPC was suppressed by the addition of cholesterol. LCAT activity with 10% cholesterol vesicles was decreased by adding 5% lysoPC, yet activity with 5% cholesterol vesicles was unaffected by adding 5% lysoPC. This difference may be explained by a balance between the known LCAT inhibitory effect of lysoPC and its ability to increase bilayer fluidity and thereby increase LCAT activity. LCAT esterification of up to 37% of vesicle cholesterol failed to alter the lysoPC/cholesterol balance sufficiently to influence activity in this system. The findings of our studies are in keeping with modulation of LCAT activity by bilayer fluidity, but fluidity changes caused by enzyme action are not sufficient to regulate that activity.  相似文献   

13.
The four peptide analogs of the amphipathic helix whose interactions with dimyristoyl phosphatidylcholine were described in the preceding paper were compared with apolipoproteins (apo) A-I and A-II in ability to displace native apolipoprotein from high density lipoprotein (HDL) and in ability to activate lecithin:cholesterol acyltransferase. The rank order of the ability of the four peptide analogs to displace apo-A-I from intact HDL was 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, the same order suggested in the preceding paper for relative lipid affinities. Modified HDL from which 40% of the apo-A-I had been displaced by 18A was indistinguishable from unmodified HDL in its ability to act as a lecithin:cholesterol acyltransferase substrate. This suggests that the easily displaced apo-A-I molecules in polydisperse HDL are relatively ineffectual as lecithin:cholesterol acyltransferase activators and/or 18A replaces the lecithin:cholesterol acyltransferase activity lost. The peptide analog 18A-Pro-18A was found to be a powerful activator of lecithin:cholesterol acyltransferase when incubated with unilamellar egg phosphatidylcholine (PC) vesicles, reaching 140% of the activity of apo-A-I at a 1:1.75 peptide-to-egg PC ratio. In another experiment, it was found that discoidal egg PC complexes of 18A-Pro-18A, 18A, and des-Val10-18A, formed by cholate dialysis, had 30-45% of the activity of apo-A-I/egg PC discoidal complexes, also formed by cholate dialysis, at the same peptide/lipid weight ratio. Examination of the structures formed when the 18A-Pro-18A peptide was incubated with unilamellar egg PC vesicles indicated that the ability of 18A-Pro-18A to exceed apo-A-I in lecithin:cholesterol acyltransferase activating ability is due to the spontaneous conversion by 18A-Pro-18A of egg PC vesicles to small protein annulus-bilayer disc structures. Apo-A-I, apo-A-II, nor any of the other three peptide analogs of the amphipathic helix studied were able to convert a significant fraction of egg PC unilamellar vesicles to discoidal structures.  相似文献   

14.
We have measured the extent of incorporation of zeaxanthin (C40) and decaprenozeaxanthin (C50) in unilamellar vesicles of dimyristoylphosphatidylcholine (n-C14) and dipalmitoylphosphatidylcholine (n-C16). The incorporation is larger when the molecular length of the carotenoid corresponds to the thickness of the phospholipid bilayer. Stereochemically pure 2,3-di-O-phytanyl-sn-glycero-1-phosphocholine was prepared by modification of the polar heads of the phospholipids of Halobacterium halobium. Vesicles of this branched-chain ether phospholipid incorporate poorly the carotenoids, whereas egg lecithin vesicles incorporate them better. Osmotic swelling and water permeability of vesicles, with or without carotenoids, were measured in a stopped-flow, light-scattering system. The reinforcing effect (lower permeability and higher rigidity) of carotenoids at 1.5 mol% incorporation into diphytanylphosphatidylcholine vesicles is comparable to that of 5 mol% cholesterol; however, carotenoids have no measurable effect on the egg lecithin vesicles. These results imply that the reinforcement of the membrane depends on a subtle adjustment of the phospholipid-carotenoid system.  相似文献   

15.
It has been shown that UV-induced peroxide oxidation of lipids (POL) and its water-soluble products similarly affect the liposomes of egg lecithin and mitochondrial lipids; they decrease the electric stability of the membranes, and aggregation ability of vesicles and increase proton permeability of the membranes. Possible mechanism of the increase of membrane ionic permeability during POL is discussed.  相似文献   

16.
Protein-mediated transfer of phosphatidylcholine (PC) by bovine liver phosphatidylcholine transfer protein (PC-TP) was examined using a vesicle-vesicle assay system. Donor and acceptor membranes were prepared from Escherichia coli phospholipids and limiting amounts of egg yolk PC. PC transfer between vesicles of E. coli lipid/egg PC was markedly higher than transfer of PC from vesicles of E. coli lipid/egg PC to vesicles of E. coli lipid. Kinetic parameters of the interaction between PC-TP and E. coli lipid vesicles with or without PC was investigated. The apparent dissociation constants of the complex formed between PC-TP and these vesicles were determined kinetically and from double-reciprocal plots of intrinsic PC-TP fluorescence intensity increase versus vesicle concentration. The magnitude of the dissociation constant decreased as the PC content of the vesicles increased from 0 to 5 mol%. In addition, kinetic analysis revealed that the presence of PC in acceptor vesicles increased both the association and dissociation of PC-TP from vesicles. The effect of membrane PC molecules on transfer rates was examined using bis-phosphatidylcholine, a dimeric PC molecule which is not transferred by PC-TP. Rates of PC transfer to acceptor vesicles comprised of E. coli lipid/bis-PC were virtually identical to rates observed with acceptors vesicles prepared from E. coli lipid. The results suggest that transfer of PC by PC-TP is enhanced only when insertion of protein-bound PC occurs concurrently with the extraction of a molecule of membrane PC, i.e., a concerted, one-step catalytic mechanism for phospholipid exchange.  相似文献   

17.
Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This is attributed to the presence of unsaturated acyl chains in egg lecithin.  相似文献   

18.
The effect of ionic strength on the fluidity of rabbit intestinal brush-border membranes has been studied using two fluorescence probes, pyrene and 1-anilino-8-naphthalene sulfonate (ANS). The imposition of a potential gradient on the pyrene-probed membrane vesicles (out greater than in) with increasing NaCl concentration in the medium resulted in a marked enhancement of the excimer formation efficiency, accompanied by a decrease in the ratio of fluorescence intensities of the probe at 392 and 375 nm. Fluorescence polarization of the pyrene-membrane complex is independent of temperature in the absence of salts, while it is dependent on temperature from 10 to 47 degrees C in the presence of salts, as shown by the thermal Perrin plots of polarization. It has been demonstrated that there is a linear relationship between the changes in the pyrene excimer formation efficiency in the membranes and of the values of the binding parameters of ANS for the membranes. From these results, it is suggested that the lipid phase of the membranes becomes more fluid by shielding negatively charged groups of the membrane surface and that there is a fairly close correlation between the membrane organization and the membrane surface charge density.  相似文献   

19.
The well-characterized integral membrane protein lactose (lac) permease from Escherichia coli was reconstituted together with trace amounts (molar fraction X = 0.005 of the total phospholipid) of different pyrene-labeled phospholipid analogs into 1-palmitoyl-2-oleoyl-sn-glycero-3-sn-glycero-3-phospho-rac'-glycerol (POPG) liposomes. Effects of lac permease on bilayer lipid dynamics were investigated by measuring the excimer-to-monomer fluorescence intensity ratio IE/IM. Compared to control vesicles, the presence of lac permease (at a protein:phospholipid stoichiometry P/L of 1:4.000) increased the rate of excimer formation by 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) by approximately fivefold. Decreasing P/L from approximately 1:4.000 to 1:7.600 decreased the IE/IM for PPDPC from 0.16 to 0.05, respectively. An increase in bilayer fluidity due to permease is unlikely, thus implying that the augmented IE/IM should arise from partial lateral segregation of PPDPC in the vesicles. This notion is supported by the further 38% increase in IE/IM observed for the pyrene-labeled Cys-148 lac permease reconstituted into POPG vesicles at P/L 1:4000. The importance of the length of the lipid-protein boundary is implicated by the reduction in IE/IM resulting from the aggregation of the lac permease in vesicles by a monoclonal antibody. Interestingly, excimer formation by 1-palmitoyl-2[6-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphocholine (PPHPC) was enhanced only fourfold in the presence of lac permease. Results obtained with the corresponding pyrenyl phosphatidylglycerols and -methanols were qualitatively similar to those above, thus indicating that lipid headgroup-protein interactions are not involved. Inclusion of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamino-N-(5-fluoresce inthio- carbamoyl) (DPPF, X = 0.005) into reconstituted lactose permease vesicles containing PPDPC caused a nearly 90% decrease in excimer fluorescence, whereas in control vesicles lacking the reconstituted protein only 40% quenching was evident. The addition of 1,2-dipalmitoyl-sn-glycero-3-phospho-rac'-glycerol (DPPG) decreased IE/IM for PPDPC, revealing the driving force for the lateral segregation of this probe to become attenuated. More specifically for protein-free bilayers at XDPPG = 0.10 the rate of lateral diffusion of PPDPC in POPG is diminished, as evidenced by the 24% decrement in IE/IM, under these conditions the increase in IE/IM due to lac permease was strongly reduced, by approximately 84%. The present data are interpreted in terms of the hydrophobic mismatch theory, which predicts that integral membrane proteins will draw lipids of similar hydrophobic thickness into their vicinity. In brief, the approximate lengths of most of the predicted 12 hydrophobic, membrane-spanning alpha-helical segments of lactose permease range between 28.5 and 37.5 A and thus exceed the hydrophobic thickness of POPG of approximately 25.8 A. Therefore, to reduce the free energy of the assembly, longer lipids such as PPDPC and DPPF are accumulated in the immediate vicinity of lactose permease in fluid, liquid crystalline POPG bilayers.  相似文献   

20.
The interaction of the bile salt cholate with unilamellar vesicles was studied. At low cholate content, equilibrium binding measurements with egg yolk lecithin membranes suggest that cholate binds to the outer vesicle leaflet. At increasing concentrations, further bile salt binding to the membrane is hampered. Before the onset of membrane solubilization, diphenylhexatriene fluorescence anisotropy decreases to a shallow minimum. It then increases to the initial value in the cholate concentration range of membrane solubilization. At still higher cholate concentrations, a drop in fluorescence anisotropy indicates the transformation of mixed disk micelles into spherical micelles. Perturbation of the vesicle membranes at molar ratios of bound cholate/lecithin exceeding 0.15 leads to a transient release of oligosaccharides from intravesicular space. The cholate concentrations required to induce the release depend on the size of the entrapped sugars. Cholesterol stabilizes the membrane, whereas, in spite of enhanced membrane order, sphingomyelin destabilizes the membrane against cholate. Freeze-fracture electron microscopy and phosphorus-31 nuclear magnetic resonance (31P NMR) also reflect a change in membrane structure at maximal cholate binding to the vesicles. In 31P NMR spectra, superimposed on the anisotropic line typically found in phospholipid bilayers, an isotropic peak was found. This signal is most probably due to the formation of smaller vesicles after addition of cholate. The results were discussed with respect to bile salt/membrane interactions in the liver cell. It is concluded that vesicular bile salt transport in the cytoplasm is unlikely and that cholate binding is restricted to the outer leaflet of the canalicular part of the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号