首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park  Roh  Je  Jin  Oh  Park  & Kang 《Letters in applied microbiology》1998,27(1):62-66
Bacillus thuringiensis strains non-toxic to Lepidoptera, Bombyx mori and Diptera, Culex pipiens pallens larvae were isolated from Korean soil samples during an investigation of B. thuringiensis isolates highly toxic to insect pests. One of these isolates, NTB-88, produces parasporal inclusions about 138 kDa in size and is non-toxic to 19 insect species of three orders, Lepidoptera, Diptera and Coleoptera, even though it is highly susceptible to tryptic cleavage. Study of flagellar (H) antibodies of 33 B. thuringiensis strains revealed that NTB-88 has an H antigen identical with that of subsp. morrisoni (serotype 8a8b). Comparison of parasporal inclusion proteins and plasmid DNA patterns of strain NTB-88 with B. thuringiensis subsp. morrisoni HD-12 and B. thuringiensis subsp. morrisoni PG-14 showed that the isolate is a novel non-insecticidal B. thuringiensis strain belonging to serotype 8a8b.  相似文献   

2.
Parasporal crystals of Bacillus thuringiensis subspp. kurstaki, tolworthi, alesti, berliner, and israelensis were compared by electron microscopy, polyacrylamide gel electrophoresis, amino acid analysis, tryptic peptide mapping, immunological analysis, and insecticidal activity. Spore coats also were compared by polyacrylamide gel electrophoresis. B. thuringiensis subsp. israelensis crystals were lethally toxic to mosquito larvae and nontoxic to tobacco hornworm larvae. Conversely, crystals from the other subspecies killed tobacco hornworm larvae but were ineffective against mosquitoes. Crystalline inclusion bodies of all subspecies contained a protoxic subunit that had an apparent molecular weight of approximately 1.34 X 10(5). However, polyacrylamide gel electrophoretic patterns of solubilized crystals revealed a small-molecular-weight component (apparent molecular weight, 26,000) in B. thuringiensis subsp. israelensis that was absent in the other subspecies. Also, differences were noted in amino acid composition and tryptic peptide fingerprints. Crystal proteins were found in spore coats of all subspecies. The results suggest that insecticidal specificity is due to unique polypeptide toxins.  相似文献   

3.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The parasporal bodies of the mosquitocidal isolates of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 were compared with regard to their hemolytic and cytolytic activities and the immunological relatedness of the 28- and 65-kilodalton (kDa) proteins that occur in both subspecies. The alkali-solubilized parasporal bodies of B. thuringiensis subsp. israelensis caused 50% lysis of human erythrocytes at 1.14 micrograms/ml, whereas those of B. thuringiensis subsp. morrisoni caused similar lysis at 1.84 micrograms/ml. Preincubation of solubilized parasporal bodies with dioleolyl phosphatidylcholine significantly inhibited the hemolytic activity of both supspecies. In cytolytic assays against Aedes albopictus cells, the toxin concentrations causing 50% lysis for B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni were 1.87 and 11.98 micrograms/ml, respectively. Polyclonal antibodies raised separately against the 25-kDa protein (a tryptic digest of the 28-kDa protein) or the 65-kDa protein of B. thuringiensis subsp. israelensis cross-reacted, respectively, with the 28- and the 65-kDa proteins of B. thuringiensis subsp. morrisoni. However, neither of these antibodies cross-reacted with the 135-kDa protein of either subspecies. These results indicate that the mosquitocidal and hemolytic properties of B. thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni isolate PG-14 are probably due to the biologically related proteins that are present in the parasporal bodies of both subspecies. The lower hemolytic activity of the B. thuringiensis subsp. morrisoni may be due to the presence of lower levels of the 28-kDa protein in that subspecies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

6.
An enzyme-linked immunosorbent assay was used to detect and quantitate the parasporal crystal toxins of Bacillus thuringiensis subspp. kurstaki and israelensis. The assay method described is extremely sensitive, accurate, and highly specific. With this technique, crystalline insecticidal proteins from several subspecies of B. thuringiensis were compared. The dipteran crystal toxin produced by B. thuringiensis subsp. israelensis was shown to share few epitopes with the lepidopteran toxin from B. thuringiensis subspp. kurstaki, tolworthi, berliner, and alesti.  相似文献   

7.
A two-step procedure was used to place a cryIC crystal protein gene from Bacillus thuringiensis subsp. aizawai into the chromosomes of two B. thuringiensis subsp. kurstaki strains containing multiple crystal protein genes. The B. thuringiensis aizawai cryIC gene, which encodes an insecticidal protein highly specific to Spodoptera exigua (beet armyworm), has not been found in any B. thuringiensis subsp. kurstaki strains. The cryIC gene was cloned into an integration vector which contained a B. thuringiensis chromosomal fragment encoding a phosphatidylinositol-specific phospholipase C, allowing the B. thuringiensis subsp. aizawai cryIC to be targeted to the homologous region of the B. thuringiensis subsp. kurstaki chromosome. First, to minimize the possibility of homologous recombination between cryIC and the resident crystal protein genes, B. thuringiensis subsp. kurstaki HD73, which contained only one crystal gene, was chosen as a recipient and transformed by electroporation. Second, a generalized transducing bacteriophage, CP-51, was used to transfer the integrated cryIC gene from HD73 to two other B. thuringiensis subsp. kurstaki stains. The integrated cryIC gene was expressed at a significant level in all three host strains, and the expression of cryIC did not appear to reduce the expression of the endogenous crystal protein genes. Because of the newly acquired ability to produce the CryIC protein, the recombinant strains showed a higher level of activity against S. exigua than did the parent strains. This two-step procedure should therefore be generally useful for the introduction of an additional crystal protein gene into B. thuringiensis strains which have multiple crystal protein genes and which show a low level of transformation efficiency.  相似文献   

8.
Fifteen Bacillus thuringiensis strains representing 13 serotypes were screened with five oligodeoxyribonucleotide probes specific for certain regions of two published sequences and one unpublished sequence of B. thuringiensis delta-endotoxin genes. Of the 15 cultures, 14 hybridized with at least one probe; the B. thuringiensis subsp. thompsoni strain alone did not hybridize. Two B. thuringiensis subsp. kurstaki strains of commercial interest, HD-1 and NRD-12, were found to be so closely related as to be indistinguishable with this technique; the same situation was found with strains from B. thuringiensis subspp. dendrolimus and sotto. Five strains were identified as probably containing only one endotoxin gene. A probe specific for the gene from the B. thuringiensis subsp. kurstaki HD-73 strain hybridized to only 3 of the 15 cultures tested. The hybridization data suggest that the DNA sequences coding for the C-terminal region of the endotoxin protein are as well conserved as those coding for the N-terminal toxic portion.  相似文献   

9.
Fifteen Bacillus thuringiensis strains representing 13 serotypes were screened with five oligodeoxyribonucleotide probes specific for certain regions of two published sequences and one unpublished sequence of B. thuringiensis delta-endotoxin genes. Of the 15 cultures, 14 hybridized with at least one probe; the B. thuringiensis subsp. thompsoni strain alone did not hybridize. Two B. thuringiensis subsp. kurstaki strains of commercial interest, HD-1 and NRD-12, were found to be so closely related as to be indistinguishable with this technique; the same situation was found with strains from B. thuringiensis subspp. dendrolimus and sotto. Five strains were identified as probably containing only one endotoxin gene. A probe specific for the gene from the B. thuringiensis subsp. kurstaki HD-73 strain hybridized to only 3 of the 15 cultures tested. The hybridization data suggest that the DNA sequences coding for the C-terminal region of the endotoxin protein are as well conserved as those coding for the N-terminal toxic portion.  相似文献   

10.
beta-Exotoxin is a thermostable metabolite produced by some strains of Bacillus thuringiensis. Because of vertebrate toxicity, most commercial preparations of B. thuringiensis are prepared from isolates that do not produce beta-exotoxin. The aim of the present study was to find out the possible relationship between serovars of B. thuringiensis and beta-exotoxin production. A specific HPLC assay for type I beta-exotoxin has been used to detect this exotoxin in supernatants from final whole cultures of 100 strains belonging to four serovars of B. thuringiensis: thuringiensis, kurstaki, aizawai, and morrisoni. For each serovar, 25 strains randomly chosen from two Spanish collections were analyzed. Frequency of beta-exotoxin production was higher in B. thuringiensis serovar thuringiensis, whereas only two strains from serovar kurstaki showed beta-exotoxin production. None of the 25 strains belonging to serovars aizawai and morrisoni was found to produce this compound. Along with data from other studies, serovars can be classified as "common," "seldom," or "rare" beta-exotoxin producers. The serovar-dependent beta-exotoxin production is discussed in relation to the evolutionary process of serovar differentiation, the plasmid compatibility and limited plasmid exchange between serovars, and with the serovar-dependent regulation of plasmid-encoded genes.  相似文献   

11.
Gram-negative bacteria can communicate with each other by N-acyl homoserine lactones (AHLs), which are quorum-sensing autoinducers. Recently, the aiiA gene (encoding an enzyme catalyzing the degradation of AHL) has been cloned from Bacillus sp. strain 240B1. During investigations in the course of the ongoing Bacillus thuringiensis subsp. morrisoni genome project, an aiiA homologue gene in the genome sequence was found. These results led to consideration of the possibility of the widespread existence of the gene in B. thuringiensis. aiiA homologue genes were found in 16 subspecies of B. thuringiensis, and their sequences were determined. Comparison of the Bacillus sp. strain 240B1 aiiA gene with the B. thuringiensis aiiA homologue genes showed high homologies of 89 to 95% and 90 to 96% in the nucleotide sequence and deduced amino acid sequence, respectively. Among the subspecies of B. thuringiensis having an aiiA gene, the subspecies aizawai, galleriae, kurstaki, kyushuensis, ostriniae, and subtoxicus were shown to degrade AHL. It was observed that recombinant Escherichia coli producing AiiA proteins also had AHL-degrading activity and could also attenuate the plant pathogenicity of Erwinia carotovora. These results indicate that insecticidal B. thuringiensis strains might have potential to compete with gram-negative bacteria in natural ecosystems by autoinducer-degrading activity.  相似文献   

12.
The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.  相似文献   

13.
14.
A total of 1700 Japanese strains of Bacillus thuringiensis, belonging to at least 47 H serogroups, were examined for insecticidal activity against larvae of the diamondback moth, Plutella xylostella. The high-level toxicity was associated with 612 isolates (36.0%). Of these, 608 isolates (99.3%) fell into 13 H serogroups belonging to the low-numbered H serotypes, H1-H10. Conversely, most isolates belonging to the high-numbered serotypes (>H10) had little or no larvicidal activity; only one isolate of the serovar japonensis H23 was active. P xylostella larvae were susceptible to 89.8% of the serovar morrisoni H8a:8b strains and 85.7% of galleriae H5a:5b strains. High values of 60-80% were also obtained in six serovars (thuringiensis H1, alesti H3a:3c, kurstaki H3a:3b:3c, kenyae H4a:4c, aizawai H7, and tolworhi H9), while relatively low values of <60% in two other common serovars, sotto H4a:4b and darmstadiensis H10a:10b. Five selected isolates, belonging to H serovars other than kurstaki and aizawai, were 10-60 times less toxic than the reference strain HD-1 (serovar kurstaki). Parasporal inclusion proteins of these strains were immunologically unrelated to those of the strain HD-1 and the aizawai type strain.  相似文献   

15.
The insecticidal toxins from Bacillus thuringiensis subspp. kurstaki (antilepidopteran), morrisoni strain tenebrionis (anticoleopteran), and israelensis (antidipteran) did not affect the growth of a variety of bacteria (8 gram-negative, 5 gram-positive, and a cyanobacterium), fungi (2 Zygomycetes, 1 Ascomycete, 2 Deuteromycetes, and 2 yeasts), and algae (primarily green and diatoms) in pure and mixed culture, as determined by dilution, disk-diffusion, and sporulation assays with purified free and clay-bound toxins. The insecticidal crystal proteins from B. thuringiensis subspp. kurstaki and israelensis had no antibiotic effect on various gram-positive bacteria.  相似文献   

16.
Parental strains and asporogenous mutants of Bacillus thuringiensis subspp. kurstaki and aizawai produced high yields of delta-endotoxin on M medium, which contained 330 mug of potassium per ml, but not on ST and ST-a media, each of which contained only 11 mug of potassium per ml. On ST and ST-a media, refractile granules were formed instead. These granules had no insecticidal activity against silkworms and were isolated and identified as poly-beta-hydroxybutyric acid. Supplementation of the potassium-deficient ST-a medium with 0.1% KH(2)PO(4) (3.7 mM) led to the formation of crystalline delta-endotoxin. The replacement of KH(2)PO(4) with equimolar amounts of KCl, KNO(3), and potassium acetate or an equivalent amount of K(2)SO(4) had a similar effect, whereas the addition of an equimolar amount of NaH(2)PO(4) or NH(4)H(2)PO(4) did not cause the endotoxin to form. An asporogenous mutant, B. thuringiensis subsp. kurstaki strain 290-1, produced delta-endotoxin on ST-a medium supplemented with 3 mM or more potassium but formed only poly-beta-hydroxybutyric acid granules on the media containing 相似文献   

17.
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts.  相似文献   

18.
The mosquitocidal properties of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni PG-14 are attributable to protein inclusions grouped together within a parasporal body. In both of these strains, the mosquitocidal activity resides in proteins with molecular masses of 27, 72, 128, and 135 kDa. In an attempt to determine the toxicity of each protein, the shuttle vector pHT3101 was used to express the cryIVD gene (encoding the 72-kDa CryIVD protein) from B. thuringiensis subsp. morrisoni in an acrystalliferous mutant of B. thuringiensis subsp. kurstaki. With this system, parasporal inclusions of the 72-kDa protein were obtained that were comparable in size, shape, and toxicity to those produced by parental B. thuringiensis subsp. morrisoni. The inclusions were bar shaped, measured 500 by 300 by 150 nm, and were easily visible with phase-contrast microscopy by 16 h of cell growth. A 50% lethal concentration of 64 ng/ml for these inclusions was determined in bioassays against fourth instars of Culex quinquefasciatus, which was similar to the 50% lethal concentration of 55 ng/ml obtained for the 72-kDa inclusion from B. thuringiensis subsp. israelensis. In contrast, expression of the cryIVD gene in Escherichia coli was very low and only detectable by immunoblot analysis. These results demonstrate that the pHT3101-B. thuringiensis expression system can be used to express the CryIVD protein in quantities and with properties comparable to that obtained with the natural host. This system may prove useful for the expression of other B. thuringiensis proteins and, in particular, for reconstitution experiments with inclusions produced by the mosquitocidal subspecies of B. thuringiensis.  相似文献   

19.
The mosquitocidal properties of Bacillus thuringiensis subsp. israelensis and B. thuringiensis subsp. morrisoni PG-14 are attributable to protein inclusions grouped together within a parasporal body. In both of these strains, the mosquitocidal activity resides in proteins with molecular masses of 27, 72, 128, and 135 kDa. In an attempt to determine the toxicity of each protein, the shuttle vector pHT3101 was used to express the cryIVD gene (encoding the 72-kDa CryIVD protein) from B. thuringiensis subsp. morrisoni in an acrystalliferous mutant of B. thuringiensis subsp. kurstaki. With this system, parasporal inclusions of the 72-kDa protein were obtained that were comparable in size, shape, and toxicity to those produced by parental B. thuringiensis subsp. morrisoni. The inclusions were bar shaped, measured 500 by 300 by 150 nm, and were easily visible with phase-contrast microscopy by 16 h of cell growth. A 50% lethal concentration of 64 ng/ml for these inclusions was determined in bioassays against fourth instars of Culex quinquefasciatus, which was similar to the 50% lethal concentration of 55 ng/ml obtained for the 72-kDa inclusion from B. thuringiensis subsp. israelensis. In contrast, expression of the cryIVD gene in Escherichia coli was very low and only detectable by immunoblot analysis. These results demonstrate that the pHT3101-B. thuringiensis expression system can be used to express the CryIVD protein in quantities and with properties comparable to that obtained with the natural host. This system may prove useful for the expression of other B. thuringiensis proteins and, in particular, for reconstitution experiments with inclusions produced by the mosquitocidal subspecies of B. thuringiensis.  相似文献   

20.
Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号