共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Measurement of the matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin2. 总被引:4,自引:2,他引:4 下载免费PDF全文
A method was developed to monitor continuously the matrix free Ca2+ concentration ([Ca2+]m) of heart mitochondria by use of the fluorescent Ca2+ indicators, fura-2 and quin2. The acetoxymethyl esters of fura-2 and quin2 were accumulated in and hydrolysed by isolated mitochondria. An increase of the mitochondrial Ca content from 0.3 nmol/mg of protein to 6 nmol/mg corresponded to a rise of [Ca2+]m from 30 to 1000 nM. The results indicate that physiological fluctuations of the mitochondrial Ca content elicit changes of [Ca2+]m in that range which regulates the matrix dehydrogenases. 相似文献
3.
D J Harvey J F Godber M P Timmerman L M Castell C C Ashley 《Biochemical and biophysical research communications》1985,128(3):1180-1189
The fluorescent Ca2+ indicator, quin 2, has been used in isolated striated muscle fibres. There is a distinct quin 2 fluorescence peak at lambda 500 nm upon excitation at lambda 339 nm after axial injection of the potassium salt of quin 2, pH 7.1. Single voltage-clamp or current clamp electrical stimulation resulted in a distinct transient change in the fluorescence at lambda 500 nm which was not observed at lambda 400 nm, the peak of the fibre autofluorescence. Ca2+ buffering is marked at high quin 2 concentrations (greater than or equal to 400 microM) producing a slow decay of force and fluorescence. At lower concentrations (8-30 microM) of quin, the decay of force is within the range observed in non-injected control fibres. A Kd of 457 nM at 5 mM free Mg2+ suggests an upper resting free Ca2+ concentration of 310 nM at 12 degrees C. 相似文献
4.
Simultaneous measurement of Ca2+ in muscle with Ca electrodes and aequorin. Diffusible cytoplasmic constituent reduces Ca(2+)-independent luminescence of aequorin 总被引:2,自引:0,他引:2 下载免费PDF全文
Estimates of cytoplasmic Ca2+ concentration ([Ca2+]i) were made essentially simultaneously in the same intact frog skeletal muscle fibers with aequorin and with Ca-selective microelectrodes. In healthy fibers under truly resting conditions [Ca2+]i was too low to be measured reliably with either technique. The calibration curves for both indicators were essentially flat in this range of [Ca2+], and the aequorin light signal was uniformly below the level to be expected in the total absence of Ca2+. When [Ca2+]i had been raised to a stable level below the threshold for contracture by increasing [K+]o to 12.5 mM, [Ca2+]i was 38 nM according to aequorin and 59 nM according to the Ca-selective microelectrodes. These values are not significantly different. Our estimates of [Ca2+]i are lower than most others obtained with microelectrodes, probably because the presence of aequorin in the cells allowed us to detect damaging microelectrode impalements that otherwise we would have had no reason to reject. The observation that the light emission from aequorin-injected fibers in normal Ringer solution was below the level expected from the Ca(2+)-independent luminescence of aequorin in vitro was investigated further, with the conclusion that the myoplasm contains a diffusible macromolecule (between 10 and 30 kD) that interacts with aequorin to reduce light emission in the absence of Ca2+. 相似文献
5.
H Kindmark M K?hler T Nilsson P Arkhammar K L Wiechel P Rorsman S Efendi? P O Berggren 《FEBS letters》1991,291(2):310-314
In human pancreatic islets an increase in the glucose concentration from 3 to 20 mM raised the free cytoplasmic Ca2+ concentration [( Ca2+]i), an effect being reversible upon withdrawal of the sugar. Depolarization with a high concentration of K+ or the sulphonylurea tolbutamide also raised [Ca2+]i. Addition of extracellular ATP produced a transient rapid rise in [Ca2+]i. Oscillations in [Ca2+]i were observed in the presence of 10 mM glucose. Insulinoma cells responded to glucose and tolbutamide with increases in [Ca2+]i, whereas the sulphonamide diazoxide caused a decrease in [Ca2+]i. These findings confirm previous results obtained in rodent beta-cells. 相似文献
6.
7.
Evidence has accrued during the past two decades that mitochondrial Ca2+ plays an important role in the regulation of numerous cell functions such as energy metabolism. This implies that mitochondrial Ca2+ transport systems might be able to relay the changes of cytosolic Ca2+ concentration ([Ca2+]c) into mitochondrial matrix for regulating biochemical activities. To substantiate this idea, measurements of intramitochondrial free Ca2+ concentration ([Ca2+]m) become essential. In this article, we review the results from recent studies attempting to measure [Ca2+]m in living cells. In addition, the significance of each study is discussed. 相似文献
8.
Vascular smooth muscle cells (VSMC) express three isoforms of the sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) pump; SERCA2b predominates (91%), whereas SERCA2a (6%) and SERCA3 (3%) are present in much smaller amounts. Treatment with thapsigargin (Tg) or A-23187 increased the level of mRNA encoding SERCA2b four- to fivefold; SERCA3 increased about 10-fold, whereas SERCA2a was unchanged. Ca2+ chelation prevented the Tg-induced SERCA2b increase, whereas Ca2+ elevation itself increased SERCA2b expression. These responses were discordant with those of 78-kDa glucose-regulated protein/immunoglobulin-binding protein (grp78/BiP), an endoplasmic reticulum stress-response protein. SERCA2b mRNA elevation was much larger than could be accounted for by the observed increase in message stability. The induction of SERCA2b by Tg did not require protein synthesis, nor was it affected by inhibitors of calcineurin, protein kinase C, Ca2+/calmodulin-dependent protein kinase, or tyrosine protein kinases. Treatment with the nonselective protein kinase inhibitor H-7 prevented Tg-induced SERCA2b expression from occurring, whereas another nonselective inhibitor, staurosporine, was without effect. We conclude that changes in cytosolic Ca2+ control the expression of SERCA2b in VSMC via a mechanism involving a currently uncharacterized, H-7-sensitive but staurosporine-insensitive, protein kinase. 相似文献
9.
10.
The highly selective fluorescent Ca2+ indicator 'quin 2' has been loaded into ram and boar spermatozoa as the acetoxymethyl ester, 'quin 2/AM', which is hydrolysed and trapped in the cytoplasm. Loadings of several mM were not toxic to spermatozoa as judged by motility. Fluorescence measurements (mean +/- S.E.M.) indicated a normal cytoplasmic free-calcium concentration, [Ca2+]i, of 193 nM +/- 0.2 (n = 10) for ejaculated ram sperm, 175 nM +/- 3.9 (n = 10) for cauda epididymal boar sperm and 105 nM +/- 10 (n = 10) for the caput sperm. After cold shock ejaculated ram and cauda epididymal boar sperm did not retain quin 2, due presumably to structural damage. However, cold shocked caput boar sperm could be readily loaded with quin 2 and had a [Ca2+]i similar to control sperm. Sodium azide, propranolol and caffeine did not affect the [Ca2+]i of ram and boar sperm, however theophylline, dibutyryl c-AMP and La3+ significantly reduced it. The inhibitors rotenone and antimycin A, and the uncouplers 2,4-DNP and CCCP caused a transient elevation of [Ca2+]i, most likely resulting from release of mitochondrial calcium. The increased [Ca2+]i following addition of the ionophore A23187, was highly pH dependent in ram spermatozoa and it was critical to increase the pH of the medium above 7.5; the increase in [Ca2+]i was apparently not dependent on the oxidative metabolism of the sperm as addition of the uncouplers 2,4-DNP and CCCP had no effect on [Ca2+ )i. Addition of filipin to ram and boar sperm resulted in a large increase in [Ca2+]i but addition of filipin to ionophore-treated sperm caused [Ca2+]i to fall well below control levels. 相似文献
11.
12.
Dual-fluorescence flow cytometric analysis of membrane potential and cytoplasmic free Ca2+ concentration in embryonic rat hippocampal cells 总被引:1,自引:0,他引:1
We have demonstrated simultaneous measurement of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]i) by utilizing a dual-laser flow cytometer in embryonic rat hippocampal cell suspensions. Veratrine, a Na+ channel activator, induced both membrane depolarization and elevation of [Ca2+]i. These actions of veratrine were all reversed by the presence of tetrodotoxin (TTX). These findings suggest that Na+ channels are functionally expressed in the cells and the activation of Na+ channels increases [Ca2+]i. The usefulness of the flow cytometric analysis in elucidating the expression of membrane functions in the embryonic central nervous systems (CNS) is discussed. 相似文献
13.
Resting cytoplasmic free Ca2+ concentration in frog skeletal muscle measured with fura-2 conjugated to high molecular weight dextran 总被引:1,自引:0,他引:1
《The Journal of general physiology》1995,106(6):1123-1150
Intact frog skeletal muscle fibers were injected with the Ca2+ indicator fura-2 conjugated to high molecular weight dextran (fura dextran, MW approximately 10,000; dissociation constant for Ca2+, 0.52 microM), and the fluorescence was measured from cytoplasm (17 degrees C). The fluorescence excitation spectrum of fura dextran measured in resting fibers was slightly red-shifted compared with the spectrum of the Ca(2+)-free indicator in buffer solutions. A simple comparison of the spectra in the cytoplasm and the in vitro solutions indicates an apparently "negative" cytoplasmic [Ca2+], which probably reflects an alteration of the indicator properties in the cytoplasm. To calibrate the indicator's fluorescence signal in terms of cytoplasmic [Ca2+], we applied beta-escin to permeabilize the cell membrane of the fibers injected with fura dextran. After treatment with 5 microM beta-escin for 30-35 min, the cell membrane was permeable to small molecules (e.g., Ca2+, ATP), whereas the 10-kD fura dextran only slowly leaked out of the fiber. It was thus possible to estimate calibration parameters in the indicator fluorescence in the fibers by changing the bathing solution [Ca2+] to various levels; the average values for the fraction of Ca(2+)-bound indicator in the resting fibers and the dissociation constant for Ca2+ (KD) were, respectively, 0.052 and 1.0 microM. For the comparison, the KD value was also estimated by a kinetic analysis of the indicator fluorescence change after an action potential stimulation in intact muscle fibers, and the average value was 2.5 microM. From these values estimated in the fibers, resting cytoplasmic [Ca2+] in frog skeletal muscle fibers was calculated to be 0.06-0.14 microM. The range lies between the high estimates from other tetracarboxylate indicators (0.1-0.3 microM; Kurebayashi, N., A. B. Harkins, and S. M. Baylor. 1993. Biophysical Journal. 64:1934-1960; Harkins, A. B., N. Kurebayashi, and S. M. Baylor. 1993. Biophysical Journal. 65:865-881) and the low estimate from the simultaneous use of aequorin and Ca(2+)-sensitive microelectrodes (< 0.04-0.06 microM; Blatter, L. A., and J. R. Blinks. 1991. Journal of General Physiology. 98:1141-1160) recently reported for resting cytoplasmic [Ca2+] in frog muscle fibers. 相似文献
14.
Yu J Leibiger B Yang SN Caffery JJ Shears SB Leibiger IB Barker CJ Berggren PO 《The Journal of biological chemistry》2003,278(47):46210-46218
Multiple inositol polyphosphate phosphatase (MIPP) is an enzyme that, in vitro, has the interesting property of degrading higher inositol polyphosphates to the Ca2+ second messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), independently of inositol lipid breakdown. We hypothesized that a truncated cytosolic form of the largely endoplasmic reticulum-confined MIPP (cyt-MIPP) could represent an important new tool in the investigation of Ins(1,4,5)P3-dependent intracellular Ca2+ homeostasis. To optimize our ability to judge the impact of cyt-MIPP on intracellular Ca2+ concentration ([Ca2+]i) we chose a poorly responsive beta-cell line (HIT M2.2.2) with an abnormally low [Ca2+]i. Our results show for the first time in an intact mammalian cell that cyt-MIPP expression leads to a significant enhancement of Ins(1,4,5)P3 concentration. This is achieved without a significant interference from other cyt-MIPP-derived inositol phosphates. Furthermore, the low basal [Ca2+]i of these cells was raised to normal levels (35 to 115 nm) when they expressed cyt-MIPP. Noteworthy is that the normal feeble glucose-induced Ca2+ response of HIT M2.2.2 cells was enhanced dramatically by mechanisms related to this increase in basal [Ca2+]i. These data support the use of cyt-MIPP as an important tool in investigating Ins(1,4,5)P3-dependent Ca2+ homeostasis and suggest a close link between Ins(1,4,5)P3 concentration and basal [Ca2+]i, the latter being an important modulator of Ca2+ signaling in the pancreatic beta-cell. 相似文献
15.
The Ca2+-activated photoproteins aequorin and obelin are capable of detecting rapid changes in free Ca2+ over the range 10nM-100uM. Whilst they have been used to quantify free Ca transients in giant cells for some time, their use in small mammalian cells has been restricted because of the difficulty of incorporating them into live cells without impairment of cell function. We have developed three methods for incorporating photoproteins into small cells (a) reversible cell swelling (b) membrane fusion and (c) intracellular release from pinocytotic vesicles. Formation of the membrane attack complex of complement (C5b6789), via a specific cell surface antibody to activate complement, causes a rapid increase in cytoplasmic Ca2+ detectable within 5-10 s. It provides a specific method for quantifying cytoplasmic photoprotein. As a result new insights into the role of intracellular Ca2+ in cell physiology and pathology have been established. 相似文献
16.
Ca2+ compartments in saponin-skinned cultured vascular smooth muscle cells 总被引:2,自引:0,他引:2 下载免费PDF全文
A method for saponin skinning of primary cultured rat aortic smooth muscle cells was established. The saponin-treated cells could be stained with trypan blue and incorporated more 45Ca2+ than the nontreated cells under the same conditions. At low free Ca2+ concentration, greater than 85% of 45Ca2+ uptake into the skinned cells was dependent on the extracellularly supplied MgATP. In the intact cells, both caffeine and norepinephrine increased 45Ca2+ efflux. In the skinned cells, caffeine increased 45Ca2+ efflux, whereas norepinephrine did not. The caffeine-releasable 45Ca2+ uptake fraction in the skinned cells appeared at 3 X 10(-7) M Ca2+, increased gradually with the increase in free Ca2+ concentration, and reached a plateau at 1 X 10(-5) M Ca2+. The 45Ca2+ uptake fraction, which was significantly suppressed by sodium azide, appeared at 1 X 10(-5) M Ca2+ and increased monotonically with increasing free Ca2+ concentration. The results suggest that the caffeine-sensitive Ca2+ store, presumably the sarcoplasmic reticulum, plays a physiological role by releasing Ca2+ in response to norepinephrine or caffeine and by buffering excessive Ca2+. The 45Ca2+ uptake by mitochondria appears too insensitive to be important under physiological conditions. 相似文献
17.
Exposure of adrenal chromaffin cells to carbamylcholine (CCh) in the absence of extracellular Ca2+ suppressed rises in intracellular free Ca2+ concentration ([Ca2+]i) induced by subsequent addition of Ca2+ into the incubation medium. The extent of the suppression was dependent on the concentration of CCh and the duration of exposure. A similar inhibitory effect of CCh was also observed in the case of catecholamine release. In contrast, pretreatment with 56 mM K+ did not affect these two responses induced by Ca2+. Recovery from the desensitized state was rapid, since the responses became normal within 3 min following washout of the maximum concentration of CCh. These results show that, in Ca2+-free medium, exposure of the cells to CCh induces desensitization as indicated by diminished rise in [Ca2+]i and reduced release of catecholamines. These phenomena were not due to direct inhibition of voltage-dependent Ca2+ channels by CCh, but seem to be due to an uncoupling of signal transduction between the nicotinic receptor and Ca2+ channel. 相似文献
18.
Measurement of intracellular Ca2+ in cultured arterial smooth muscle cells using Fura-2 and digital imaging microscopy 总被引:3,自引:0,他引:3
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in vascular smooth muscle (VSM). We employed the fluorescent Ca2(+)-indicator, Fura-2, and digital imaging microscopy to study the spatial distribution of intracellular Ca2+ in cultured A7r5 cells and the changes evoked by activation with 5-HT. Several methodological considerations that affect the temporal and spatial resolution of Ca2+ images have been addressed. These include: cytoplasmic distribution of Fura-2, wavelength selection for ratio imaging, signal:noise ratio measurement and the effect of [Ca2+] on the limits of detectability under conditions in which [Ca2+] is changing. The distribution of apparent free Ca2+, [Ca2+]App, in A7r5 cells was heterogeneous. This reflects, in part, different pools of intracellular Ca2+. [Ca2+]App was lowest in the nucleus (113 +/- 14 nM; n = 20 cells) and highest in the organelle-rich perinuclear region (228 +/- 12; n = 20), while the surrounding cytoplasmic area (containing relatively few organelles) had intermediate [Ca2+]app levels (150 +/- 13; n = 20). 5-HT (1 microM) evoked transient increases in [Ca2+]App that began within 11 s as relatively modest elevations of [Ca2+]App in the periphery, near the sarcolemma, and subsequently spread to the entire cell, reaching a peak within 18-24 s. At the peak of the Ca2+ transients, [Ca2+]App was highest in the perinuclear region where it sometimes exceeded the maximal detectable levels of the system (1.9 microM). The average peak Ca2+ transient amplitude in the non-nuclear cytoplasm was 1083 +/- 208 nM (1 microM 5-HT; n = 20 cells). Despite the continued presence of 5-HT following the Ca2+ transients, [Ca2+]App then returned to pre-stimulation levels within 5 min. These observations indicate that digital imaging microscopy enables the study of subcellular regulation of intracellular Ca2+ in VSM. The results provide new insights into the role of localized changes in Ca2+ in the regulation of VSM contractility. 相似文献
19.
Cultured epithelial Intestine 407 cells exhibit regular oscillations of the membrane potential with repeated hyperpolarizations. These hyperpolarizations were inhibited not only by K+ channel blockers (tetraethylammonium and nonyltriethylammonium) but also by inhibitors of the Ca2+-activated K+ channel (quinine and quinidine). Using Ca2+-selective microelectrodes, cyclic increases in the cytosolic free Ca2+ concentration of more than 1 X 10(-6) M were found to coincide with the cyclic membrane hyperpolarizations. Thus, it appears that the potential oscillation is brought about by the oscillation of the intracellular free Ca2+ level which induces periodic activation of the Ca2+-dependent K+ channels. Neither the deprivation of extracellular Ca2+ nor the application of Ca2+ channel blockers (Co2+ and Ni2+) abolished the potential oscillation. Mitochondrial inhibitors (KCN, NaN3, antimycin A, FCCP and dinitrophenol) inhibited the potential oscillation, whereas glycolytic inhibitors (iodoacetic acid and NaF) had no effects. Caffeine and oxalate, which affect the microsomal Ca2+ transport, failed to exert any effect upon the potential oscillation. It is concluded that the cytosolic Ca2+ oscillation results from cyclic releases of Ca2+ from the intracellular storage site, which depends upon mitochondrial activities. 相似文献
20.
Cytosolic free Ca2+ concentration and intracellular calcium distribution of Ca2+-tolerant isolated heart cells 总被引:2,自引:0,他引:2
J R Williamson R J Williams K E Coll A P Thomas 《The Journal of biological chemistry》1983,258(22):13411-13414
The cytosolic free Ca2+ concentration of calcium-tolerant rat myocytes has been measured by the null point titration technique using arsenazo III as a Ca2+ indicator and digitonin to permeabilize the plasma membrane. The mean value obtained for 8 separate preparations was 270 +/- 35 nM. The distribution of releasable calcium between the mitochondrial and sarcoplasmic reticular compartments was measured by the successive additions of uncoupler and A23187 to cells pretreated with ruthenium red. The relative distribution of calcium in each pool was independent of the cell calcium content up to the maximum value of releasable calcium investigated (4.5 nmol/mg of cell dry weight) and was distributed in the approximate ratio of 2:1 in favor of the sarcoplasmic reticulum. The cells contained 1 nmol of calcium/mg of cell dry weight in a form nonreleasable by A23187, which was independent of the total cell calcium content as measured by atomic absorption spectroscopy. It is calculated that the calcium content of mitochondria in heart under physiological conditions is about 5 nmol/mg of mitochondrial protein. At this level, the mitochondria are likely to provide effective buffering of the cytosolic free Ca2+ concentration of quiescent heart cells. The corresponding intramitochondrial free Ca2+ is in a range above values needed to regulate the activity of Ca2+-dependent enzymes of the citric acid cycle in heart. The physiological calcium content of the sarcoplasmic reticulum in heart cells is estimated to be about 2.5 nmol/mg of cell dry weight, which is at least 5-fold greater than the amount of calcium release calculated to cause maximum tension development of cardiac muscle. 相似文献