首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou G  Roizman B 《Journal of virology》2001,75(13):6166-6172
An earlier report showed that viruses lacking the open reading frames encoding glycoproteins J and D but containing the glycoprotein D in their envelopes (gD-/+ stocks) and viruses lacking both the open reading frames and the glycoproteins in their envelopes (gD-/- stocks) induce apoptosis (G. Zhou, V. Galvan, G. Campadelli-Fiume, and B. Roizman, J. Virol. 74:11782-11791, 2000). Furthermore, apoptosis was blocked by delivery in trans of genes expressing glycoprotein D or J. Whereas gD-/- stocks attach but cannot initiate productive infection, gD-/+ stocks infect cells and produce gD-/- progeny virus. The difference in the infectivity of these two stocks suggested the possibility that the requirements for blocking apoptosis may be different. To test this hypothesis, we cloned into baculoviruses the entire wild-type glycoprotein D (Bac-gD-WT), the ectodomain only (Bac-gD-A), the ectodomain and the transmembrane domain (Bac-gD-B), the ectodomain and the cytoplasmic domain without the transmembrane domain (Bac-gD-C), or the transmembrane domain and the carboxyl-terminal cytoplasmic domain (Bac-gD-D). We report the following. Apoptosis induced by gD-/+ stocks was blocked by delivery in trans of recombinant baculovirus Bac-gD-WT, Bac-gD-A, Bac-gD-B, or Bac-gD-C but not of Bac-gD. Apoptosis induced by gD-/- stocks was blocked by Bac-gD-WT or by a mixture of Bac-gD-B and Bac-gD-D but not by any baculoviruses expressing truncated glycoprotein D alone or by the mixture of Bac-gD-A and Bac-gD-D. We conclude that the requirements to block apoptosis induced by the two virus stocks are different. The gD ectodomain is sufficient to block apoptosis induced by gD, whereas both the ectodomain and the cytoplasmic domain are required to block apoptosis induced by gD-/- stocks. The results indicate that in the case of gD-/- stocks, the transmembrane domain is required either to deliver the ectodomain to the appropriate intracellular compartment or to form multimeric constructs which virtually reconstitute gD through the interaction of transmembrane domains.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) is an essential component of the entry apparatus that is responsible for viral penetration and subsequent cell-cell spread. To test the hypothesis that gD may serve distinguishable functions in entry of free virus and cell-cell spread, mutants were selected for growth on U(S)11cl19.3 cells, which are resistant to both processes due to the lack of a functional gD receptor, and then tested for their ability to enter as free virus and to spread from cell to cell. Unlike their wild-type parent, HSV-1(F), the variants that emerged from this selection, which were named SP mutants, are all capable of forming macroscopic plaques on the resistant cells. This ability is caused by a marked increase in cell-cell spread without a concomitant increase in efficiency of entry of free virus. gD substitutions that arose within these mutants are sufficient to mediate cell-cell spread in U(S)11cl19.3 cells but are insufficient to overcome the restriction to entry of free virions. These results suggest that mutations in gD (i) are sufficient but not necessary to overcome the block to cell-cell spread exhibited by U(S)11cl19.3 cells and (ii) are insufficient to mediate entry of free virus in the same cells.  相似文献   

3.
Fusogenic domains in herpes simplex virus type 1 glycoprotein H   总被引:4,自引:0,他引:4  
Infection of eukaryotic cells by enveloped viruses requires fusion between the viral envelope and the cellular plasma or endosomal membrane. The actual merging of the two membranes is mediated by viral envelope glycoproteins, which generally contain a highly hydrophobic region termed the fusion peptide. The entry of herpesviruses is mediated by three conserved proteins: glycoproteins B, H (gH), and L. However, how fusion is executed remains unknown. Herpes simplex virus type 1 gH exhibits features typical of viral fusion glycoproteins, and its ectodomain seems to contain a putative internal fusion peptide. Here, we have identified additional internal segments able to interact with membranes and to induce membrane fusion of large unilamellar vesicles. We have applied the hydrophobicity-at-interface scale proposed by Wimley and White (Wimley, W. C., and White, S. H. (1996) Nat. Struct. Biol. 3, 842-848) to identify six hydrophobic stretches within gH with a tendency to partition into the membrane interface, and four of them were able to induce membrane fusion. Experiments in which equimolar mixtures of gH peptides were used indicated that different fusogenic regions may act in a synergistic way. The functional and structural characterization of these segments suggests that herpes simplex virus type 1 gH possesses several fusogenic internal peptides that could participate in the actual fusion event.  相似文献   

4.
Herpes simplex virus type 1 (HSV-1) syncytial (syn) mutants cause formation of giant polykaryocytes and have been utilized to identify genes promoting or suppressing cell fusion. We previously described an HSV-1 recombinant, F1 (J.L. Goodman, M. L. Cook, F. Sederati, K. Izumi, and J. G. Stevens, J. Virol. 63:1153-1161, 1989), which has unique virulence properties and a syn mutation in the carboxy terminus of glycoprotein B (gB). We attempted to replace this single-base-pair syn mutation through cotransfection with a 379-bp PCR-generated fragment of wild-type gB. The nonsyncytial viruses isolated were shown by DNA sequencing not to have acquired the expected wild-type gB sequence. Instead, they had lost their cell-cell fusion properties because of alterations mapping to the UL45 gene. The mutant UL45 gene is one nonsyncytial derivative of F1, A4B, was found to have a deletion of a C at UL45 nucleotide 230, resulting in a predicted frame shift and termination at 92 rather than 172 amino acids. Northern (RNA) analysis showed that the mutant UL45 gene was normally transcribed. However, Western immunoblotting showed no detectable UL45 gene product from A4B or from another similarly isolated nonsyncytial F1 derivative, A61B, while another such virus, 1ACSS, expressed reduced amounts of UL45. When A4B was cotransfected with the wild-type UL45 gene, restoration of UL45 expression correlated with restoration of syncytium formation. Conversely, cloned DNA fragments containing the mutant A4B UL45 gene transferred the loss of cell-cell fusion to other gB syn mutants, rendering them UL45 negative and nonsyncytial. We conclude that normal UL45 expression is required to allow cell fusion induced by gB syn mutants and that the nonessential UL45 protein may play an important role as a mediator of fusion events during HSV-1 infection.  相似文献   

5.
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.  相似文献   

6.
Herpes simplex virus glycoprotein D (gD) is a major component of the virion envelope and infected cell membranes and is essential for virus entry into cells. We have recently shown that gD interacts with a limited number of cell surface receptors which are required for virus penetration into cells. To define domains of gD which are required for aspects of virus replication including receptor binding, deletion mutations of 5 to 14 amino acids were constructed by using oligonucleotide-directed mutagenesis. Plasmids containing mutant genes for gD were assayed for the ability to rescue a recombinant virus, F-gD beta, in which beta-galactosidase sequences replace gD-coding sequences. Effects on global folding and posttranslational processing of the molecules were assessed by using a panel of monoclonal antibodies which recognize both continuous and discontinuous epitopes. A region near the amino terminus (residues 7 to 21) of gD which is recognized by monoclonal antibodies able to neutralize herpes simplex virus in the absence of complement was not essential for function. In addition, virtually all of the cytoplasmic domain of gD and an extracellular domain close to the membrane were dispensable. In contrast, deletion mutations in the central region of the molecule, save for one exception, led to alterations in global folding of the molecule and maturation of the protein was inhibited.  相似文献   

7.
Herpes simplex virus type 1 glycoproteins gE and gI form receptors for the Fc domain of immunoglobulin G (IgG) which are expressed on the surface of infected cells and on the virion envelope and which protect the virus from immune attack. Glycoprotein gE-1 is a low-affinity Fc receptor (FcR) that binds IgG aggregates, while gE-1 and gI-1 form a complex which serves as a higher-affinity FcR capable of binding IgG monomers. In this study, we describe two approaches used to map an Fc binding domain on gE-1 for IgG aggregates. First, we constructed nine plasmids encoding gE-1/gD-1 fusions proteins, each containing a large gE-1 peptide inserted into the ectodomain of gD-1. Fusion proteins were tested for FcR activity with IgG-sensitized erythrocytes in a rosetting assay. Three of the fusion proteins containing overlapping gE-1 peptides demonstrated FcR activity; the smallest peptide that retained Fc binding activity includes gE-1 amino acids 183 to 402. These results indicate that an Fc binding domain is located between gE-1 amino acids 183 and 402. To more precisely map the Fc binding domain, we tested a panel of 21 gE-1 linker insertion mutants. Ten mutants with insertions between gE-1 amino acids 235 and 380 failed to bind IgG-sensitized erythrocytes, while each of the remaining mutants demonstrated wild-type Fc binding activity. Taken together, these results indicate that the region of gE-1 between amino acids 235 and 380 forms an FcR domain. A computer-assisted analysis of the amino acid sequence of gE-1 demonstrates an immunoglobulin-like domain contained within this region (residues 322 to 359) which shares homology with mammalian FcRs.  相似文献   

8.
Epitopes of herpes simplex virus type 1 (HSV-1) strain KOS glycoprotein gC were identified by using a panel of gC-specific, virus-neutralizing monoclonal antibodies and a series of antigenic variants selected for resistance to neutralization with individual members of the antibody panel. Variants that were resistant to neutralization and expressed an antigenically altered form of gC were designated monoclonal antibody-resistant (mar) mutants. mar mutants were isolated at frequencies of 10(-3) to 10(-5), depending on the antibody used for selection. The epitopes on gC were operationally grouped into antigenic sites by evaluating the patterns of neutralization observed when a panel of 22 antibodies was tested against 22 mar mutants. A minimum of nine epitopes was identified by this process. Three epitopes were assigned to one antigenic site (I), and six were clustered in a second complex site (II) composed of three distinct subsites, IIa, IIb, and IIc. The two antigenic sites were shown to reside in physically distinct domains of the glycoprotein, by radioimmunoprecipitation of truncated forms of gC. These polypeptides lacked portions of the carboxy terminus and ranged in size from approximately one-half that of the wild-type molecule to nearly full size. Antibodies recognizing epitopes in site II immunoprecipitated the entire series of truncated polypeptides and thereby demonstrated that site II resided in the N-terminal half of gC. Antibodies reactive with site I, however, did not immunoprecipitate fragments smaller than at least two-thirds the size of the wild-type polypeptide, suggesting that site I was located in the C-terminal portion. Sites I and II were also shown to be spatially separate on the gC polypeptide by competition enzyme-linked immunosorbent assay with monoclonal antibodies representative of different site I and site II epitopes.  相似文献   

9.
Herpes simplex virus type 1 (HSV-1) glycoprotein E (gE) functions as an immunoglobulin G (IgG) Fc binding protein and is involved in virus spread. Previously we studied a gE mutant virus that was impaired for IgG Fc binding but intact for spread and another that was normal for both activities. To further evaluate the role of gE in spread, two additional mutant viruses were constructed by introducing linker insertion mutations either outside the IgG Fc binding domain at gE position 210 or within the IgG Fc binding domain at position 380. Both mutant viruses were impaired for spread in epidermal cells in vitro; however, the 380 mutant virus was significantly more impaired and was as defective as gE null virus. gE mutant viruses were inoculated into the murine flank to measure epidermal disease at the inoculation site, travel of virus to dorsal root ganglia, and spread of virus from ganglia back to skin to produce zosteriform lesions. Disease at the inoculation and zosteriform sites was reduced for both mutant viruses, but more so for the 380 mutant virus. Moreover, the 380 mutant virus was highly impaired in its ability to reach the ganglia, as demonstrated by virus culture and real-time quantitative PCR. The results indicate that the domain surrounding amino acid 380 is important for both spread and IgG Fc binding and suggest that this domain is a potential target for antiviral therapy or vaccines.  相似文献   

10.
Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infections (complementation test). In single infections, fusion began 4 to 6 h after infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was a significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild-type infected cells. Fusion was decreased in mixed infections with the mutants and wild-type virus, but the mutants displayed a codominant fusion phenotype. Fusion was not decreased in mixed infection with pairs of mutants, indicating that the mutants, with one possible exception, are members of the same complementation group. A linkage map was established for six of the mutants by analysis of recombination frequencies.  相似文献   

11.
Epstein-Barr virus (EBV) is a human gammaherpesvirus associated with malignancies of both epithelial and lymphoid origin. Efficient infection of the latent host reservoir B lymphocytes involves the binding of glycoproteins gp350/220 for initial attachment, followed by the concerted action of gH, gL, gB, and gp42 for membrane fusion. The type II membrane protein gp42 is required for infection of B cells and assembles into a complex with gH and gL. The cellular host receptor for gp42, class II human leukocyte antigen (HLA), has been structurally verified by crystallization analyses of gp42 bound to HLA-DR1. Interestingly, the crystal structure revealed a hydrophobic pocket consisting of many aromatic and aliphatic residues from the predicted C-type lectin domain of gp42 that in other members of the C-type lectin family binds major histocompatibility complex class I or other diverse ligands. Although the hydrophobic pocket does not bind HLA class II, mutational analyses presented here indicate that this domain is essential for EBV-induced membrane fusion. In addition, mutational analysis of the region of gp42 contacting HLA class II in the gp42-HLA-DR1 cocrystal confirms that this region interacts with HLA class II and that this interaction is also important for EBV-induced membrane fusion.  相似文献   

12.
Signals involved in protection against apoptosis by herpes simplex virus 1 (HSV-1) were investigated. Using U937 monocytoid cells as an experimental model, we have demonstrated that HSV-1 rendered these cells resistant to Fas-induced apoptosis promptly after infection. UV-inactivated virus as well as the envelope glycoprotein D (gD) of HSV-1, by itself, exerted a protective effect on Fas-induced apoptosis. NF-kappaB was activated by gD, and protection against Fas-mediated apoptosis by gD was abolished in cells stably transfected with a dominant negative mutant I-kappaBalpha, indicating that NF-kappaB activation plays a role in the antiapoptotic activity of gD in our experimental model. Moreover, NF-kappaB-dependent protection against Fas-mediated apoptosis was associated with decreased levels of caspase-8 activity and with the up-regulation of intracellular antiapoptotic proteins.  相似文献   

13.
Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region.

Authors Summary

Herpes simplex virus (HSV) is a widespread human pathogen. Four viral glycoproteins (gD, gB, gH/gL) are required for HSV entry into host cells. gD binding to a cell surface receptor triggers conformational changes in the other viral glycoproteins leading to membrane fusion and viral entry. Two structurally unrelated cellular protein receptors, nectin-1 and HVEM, can mediate HSV entry upon binding to gD. The structure presented here reveals the molecular basis for the stable interaction between HSV-1 gD and the receptor nectin-1. Comparison with the previously determined structures of the gD/HVEM complex and unliganded gD shows that, despite the fact that the two receptors interact with different binding sites, they both cause a similar conformational change in gD. Therefore, our data point to a conserved mechanism for receptor mediated activation of the HSV entry process. In addition, the gD/Nectin-1 structure reveals that the gD-binding site overlaps with a surface involved in nectin-1 homo-dimerization. This observation explains how gD interferes with the cell adhesion function of nectin-1. Finally, the gD/Nectin-1 complex displays similarities with other viral ligands bound to immunoglobulin-like receptors suggesting a convergent mechanism for receptors selection and usage.  相似文献   

14.
15.
16.
To compare the immunogenity of the herpes simplex virus 1 (HSV-1/HHV-1) recombinant glycoprotein D (gD1), as a potential protective vaccine, Balb/c mice were immunized with either gD1/313 (the ectodomain of the gD1 fusion protein consisting of 313 amino acid residues), or the plasmid pcDNA3.1-gD (coding for a full length gD1 protein, FLgD1). A live attenuated HSV-1 (deleted in the gE gene), and a HSV-1 (strain HSZP)-infected cell extract served as positive controls, and three non-structural recombinant HSV-1 fusion proteins (ICP27, UL9/OBP and thymidine kinase--TK) were used as presumed non-protective (negative) controls. Protection tests showed that the LD50 value of the challenging infectious virus increased 90-fold in mice immunized with ICP27, but remained unchanged in other control mice immunized with TK and OBP polypeptides. A significant protection (the LD50 value of challenging virus increased 800-fold) was noted following immunization with gD1/313, while immunization with the gE-del virus and/or the gD1 DNA vaccine resulted in a more than 4,000-fold increase of the challenging virus dose killing 50% of the animals. Using ELISA, elevated antibody titers were detected following immunizations with gD1/313, gE-del virus, and/or HSV-1-infected-cell extract. In addition, all of the three non-structural proteins elicited a good humoral response (with titres ranging from 1:16,000 to 1:128,000). The lowest IgG response (1:8,000) was noted after immunization with the gD1 DNA vaccine. Peripheral blood leukocytes (PBLs) as well as splenocytes from mice immunized with gD1/313, gE-del virus, and gD1-plasmid responded in lymphocyte transformation test (LTT) to the presence of purified gD1/313 antigen. For PBLs, the most significant stimulation of thymidine incorporation was registered at a gD1/313 concentration of 5 microg/100 microl, while the splenocytes from DNA vaccine-immunized mice responded already at a concentration of 1 microg/100 microl.  相似文献   

17.
Zhou G  Roizman B 《Journal of virology》2002,76(12):6197-6204
Herpes simplex virus 1 mutants lacking the gene encoding glycoprotein D (gD) and the gD normally present in the envelope of the virus (gD(-/-) stocks) or mutants lacking the gD gene but containing trans-induced gD in their envelopes (gD(-/+)) cause apoptosis in human SK-N-SH cells. The gD(-/-) virions are taken up by endocytosis and are degraded, whereas gD(-/+) viruses replicate but produce gD(-/-) virus. Apoptosis is blocked by delivery of the gD gene in trans. Studies designed to test several hypotheses concerning the role of gD in apoptosis revealed the following. (i) gD(-/-) and gD(-/+) stocks induce fragmentation of cellular DNA in SK-N-SH, HEp-2, HeLa, and Vero cell lines. (ii) Chloroquine blocks apoptosis induced by gD(-/-) stocks but not by gD(-/+) stocks. The drug also rescues gD(-/-) from degradation. (iii) Cells transduced with cation-independent mannose 6-phosphate receptor (CI-MPR) block apoptosis induced by either gD(-/-) or gD(-/+) virus. (iv) Expression of sequences antisense to the cloned CI-MPR gene induced apoptosis by themselves. Wild-type virus but not gD(-/-) or gD(-/+) stocks of mutant virus blocked apoptosis induced by the expression of CI-MPR antisense sequences. These results exclude the possibility that to block apoptosis, gD must interact with its HveA receptor, a member of the tumor necrosis factor alpha receptor family. Instead, the data suggest that gD blocks the influx of lysosomal enzymes into the endosomal compartment by binding to CI-MPR. This conclusion is consistent with published reports that phosphorylated gD interacts with CI-MPR.  相似文献   

18.
Formation of small polykaryons by cell-cell fusion is characteristic of herpes simplex virus (HSV) lesions, but the great majority of viruses isolated from such lesions produce only limited cell fusion in tissue culture. Because of this, HSV laboratory strains that produce extensive cell fusion (syncytium formation) in culture are regarded as variants or mutants. Furthermore, the rarity of clinical isolates able to produce syncytia in culture suggests that extensive cell fusion is deleterious in vivo. Mutations that confer a syncytial phenotype can then be regarded as bypassing a mechanism that normally limits cell fusion. Determination of how these mutations, some of which are in the cytoplasmic tail of glycoprotein B (gB), lead to syncytium formation will likely reveal how fusion is controlled. Here we show the following. (i) Truncation of the cytoplasmic tail of HSV type 2 gB (gB-2) by a minimum of 25 residues or a maximum of 49 residues produces a syncytial phenotype. (ii) Truncation by 20 to 49 residues increases cell fusion when gB-2 is coexpressed with only gD-2, gH-2, and gL-2. (iii) Truncation by 25 or more residues removes a potential endocytosis motif and increases gB-2 cell surface expression. (iv) Mutation of this motif increases gB-2 cell surface expression but does not increase fusogenic activity, whereas mutation of another potential endocytosis motif does not increase surface expression but does increase fusogenic activity. Therefore, syncytial mutations in the cytoplasmic tail of gB-2 do not act by increasing cell surface levels of the protein.  相似文献   

19.
Antipeptide sera were used to identify a novel glycoprotein encoded by the UL53 gene of herpes simplex virus type 1 (HSV-1). The UL53 gene product is thought to play a central role in regulating membrane fusion because mutations giving rise to the syncytial phenotype, wherein cells are extensively fused, frequently map to this gene. A single 40-kDa protein, designated gK (the ninth HSV-1 glycoprotein to be described), was detected with antipeptide sera in cells infected with both wild-type and syncytial strains of HSV-1 which were labelled with [35S]methionine and [35S]cysteine or with [3H]glucosamine, and this protein was sensitive to treatment of cells with tunicamycin. With all other HSV glycoproteins studied to date, at least two glycosylated species, often differing substantially in electrophoretic mobility, have been observed in infected cells; thus, gK is unusual in this respect. The 40-kDa gK protein was also immunoprecipitated from cells infected with a recombinant adenovirus vector carrying the UL53 gene. Two glycosylated species of 39 and 41 kDa were produced when UL53 mRNA was translated in vitro in the presence of microsomes, and these proteins differed from gK produced in infected cells not only because they possessed different electrophoretic mobilities but also because they were unable to enter gels after being heated. In addition, a 36-kDa protein was detected in extracts from cells infected with HSV-2 with use of these sera.  相似文献   

20.
We have shown that immunization of mice with a vaccinia virus recombinant expressing glycoprotein D of Herpes simplex virus (HSV)-1 will induce a variety of L3T4+ T cell responses. These included a HSV-specific delayed-type hypersensitivity response, T cell help for the induction of antiviral antibodies, and the ability to eliminate a challenge dose of HSV from the pinna. This protection against a subcutaneous virus challenge was not mediated by the delayed-type hypersensitivity response because intravenous inoculation of the vaccinia virus recombinant expressing HSV-1-gD induced a state of split tolerance. Thus, mice could still clear a HSV challenge inoculum from the pinna yet were unable to mount a HSV-specific delayed-type hypersensitivity response. Evidence is presented that suggests the protective response was, at least, in part mediated by a T cell-dependent induction of virus-neutralizing antibodies. Evidence is also presented that may suggest the failure of a vaccinia virus recombinant expressing HSV-1-gD to induce HSV-specific cytotoxic T cell responses appears to minimize the protective response to only efficiently clearing low 10(4) 50% tissue culture infective dose) challenge populations of virus. These findings are discussed with relevance to the immune control of HSV infections and to the future development of anti-HSV vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号