首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the antiviral activity of sulfated polysaccharides on human immunodeficiency virus type 1 (HIV-1) was investigated by determining the effect of dextran sulfate on the binding of CD4 and several anti-gp120 monoclonal antibodies to both recombinant and cell surface gp120. Dextran sulfate did not interfere with the binding of sCD4 to rgp120 on enzyme-linked immunosorbent assay (ELISA) plates or in solution and did not block sCD4 binding to HIV-1-infected cells expressing gp120 on the cell surface. Dextran sulfate had minimal effects on rgp120 binding to CD4+ cells at concentrations which effectively prevent HIV replication. In contrast, it potently inhibited the binding of both rgp120 and cell surface gp120 to several monoclonal antibodies directed against the principal neutralizing domain of gp120 (V3). In an ELISA format, dextran sulfate enhanced the binding of monoclonal antibodies against amino-terminal regions of gp120 and had no effect on antibodies directed to other regions of gp120, including the carboxy terminus. The inhibitory effects of polyanionic polysaccharides on viral binding, viral replication, and formation of syncytia therefore appear mediated by interactions with positively charged amino acids concentrated in the V3 region. This high local positive charge density, unique to the V3 loop, leads us to propose that this property is critical to the function of the V3 region in mediating envelope binding and subsequent fusion between viral and cell membranes. The specific interaction of dextran sulfate with this domain suggests that structurally related molecules on the cell surface, such as heparan sulfate, may be additional targets for HIV binding and infection.  相似文献   

2.
Global human immunodeficiency virus type 1 (HIV-1) diversity may require engineering vaccines to express antigens representing strains prevalent in the target population of vaccine testing. The majority (90%) of incident infections in Thailand are genetic subtype E, with a small percentage of subtype B infections in the intravenous drug user populations. We have evaluated and compared the binding and HIV-1 neutralizing properties of serum antibodies induced in baboons by CHO cell-expressed monomeric gp120 derived from a CCR5-using (R5) subtype E primary HIV-1CM235 or a CXCR4-using (X4) subtype B T-cell line-adapted (TCLA) HIV-1SF2 isolate. In contrast to the subtype-specific HIV-1 neutralizing antibodies induced with recombinant HIV-1SF2 gp120 (rgp120SF2), rgp120CM235 immunization induced antibodies capable of neutralizing both subtype E and subtype B TCLA HIV-1 isolates. However, neither immunogen induced antibodies capable of neutralizing primary HIV-1 isolates. Antibody induced by rgp120CM235 preferentially bound natively folded gp120 and retained strong cross-reactivity against multiple gp120 strains within subtype E as well as subtype B. In contrast, antibody responses to rgp120SF2 were directed predominantly to linear epitopes poorly exposed on native gp120 and had more limited cross-recognition of divergent gp120. Fine epitope mapping revealed differences in antibody specificities. While both rgp120CM235 and rgp120SF2 induced antibodies to regions within C1, V1/V2, V3, and C5, unique responses were induced by rgp120CM235 to multiple epitopes within C2 and by rgp120SF2 to multiple epitopes within C3, V4, and C4. These data demonstrate that strain and/or phenotypic differences of HIV-1 subunit gp120 immunogens can substantially alter antibody binding specificities and subsequent HIV-1 neutralizing capacity.  相似文献   

3.
The alpha-glucosidase inhibitor N-butyldeoxynojirimycin (NB-DNJ) is an inhibitor of human immunodeficiency virus (HIV) replication and HIV-induced syncytium formation in vitro. Although an NB-DNJ-mediated change in viral envelope N-glycan composition inhibits HIV entry at the level of post-CD4 binding, the exact mechanism of inhibition remains to be established. In this study we have examined the effects of NB-DNJ on virion envelope composition and CD4-induced gp120 shedding and gp41 exposure. Virion composition analysis revealed an NB-DNJ-mediated reduction of 15% in overall virion envelope glycoprotein content and a reduction of 26% in the proteolytic maturation of virion gp160. Taken together, these two effects resulted in a reduction of approximately 40% in virion gp120 content. CD4-induced shedding of gp120 from the surfaces of envelope-transfected Cos cells was undetectable when gp120 was expressed in the presence of NB-DNJ. Similarly, the shedding of virion-associated gp120 was reduced 7.4-fold. CD4-induced exposure of cryptic gp41 epitopes on the surfaces of HIV-expressing ACH-2 cells was also greatly impaired, and the exposure of virion-associated gp41 epitopes was reduced 4.0-fold. Finally, CD4-induced increases in the binding of antibodies to the V3 loop of ACH-2-cell-expressed envelope glycoproteins were reduced 25-fold when the glycoproteins were expressed in the presence of NB-DNJ. These results suggest that the NB-DNJ-mediated retention of glycosylated N-glycans inhibits HIV entry by a combined effect of a reduction in virion gp120 content and a qualitative defect within the remaining gp120, preventing it from undergoing conformational changes after CD4 binding.  相似文献   

4.
The alpha-glucosidase inhibitor N-butyldeoxynojirimycin (NB-DNJ) is a potent inhibitor of human immunodeficiency virus (HIV) replication and syncytium formation in vitro. However, the exact mechanism of action of NB-DNJ remains to be determined. In this study we have examined the impairment of HIV infectivity mediated by NB-DNJ. By two independent HIV entry assays [PCR-based HIV entry assay and entry of Cocal(HIV) pseudotypes], the reduction in infectivity was found to be due to an impairment of viral entry. No effect of NB-DNJ treatment was seen on the kinetics of the interaction between gp120 and CD4 (surface plasmon resonance; BIAcore) or on the binding of virus particles to H9 cells (using radiolabeled virions). We therefore conclude that a major mechanism of action of NB-DNJ as an inhibitor of HIV replication is the impairment of viral entry at the level of post-CD4 binding, due to an effect on viral envelope components.  相似文献   

5.

Background

Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses.

Methodology/Principal Findings

A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested.

Conclusions/Significance

While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.  相似文献   

6.
Stable trimeric forms of human immunodeficiency virus recombinant gp140 (rgp140) are important templates for determining the structure of the glycoprotein to assist in our understanding of HIV infection and host immune response. Such information will aid the design of therapeutic drugs and vaccines. Here, we report the production of a highly stable and trimeric rgp140 derived from a HIV type 1 (HIV-1) subtype D isolate that may be suitable for structural studies. The rgp140 is functional in terms of binding to CD4 and three human monoclonal antibodies (17b, b12, and 2G12) that have broad neutralizing activities against a range of HIV-1 isolates from different subtypes. Treatment of rgp140 with protein disulfide isomerase (PDI) severely restricted 17b binding capabilities. The stable nature of the rgp140 was due to the lack of processing at the gp120/41 boundary and the presence of an intermonomer disulfide bond formed by the cysteines of the V3 loop. Further characterization showed the intermonomer disulfide bond to be a target for PDI processing. The relevance of these findings to the roles of the V3 domain and the timing of PDI action during the HIV infection process are discussed.  相似文献   

7.
Two neutralizing human monoclonal antibodies (HuMAbs) directed against epitopes located near the tip of the V3 loop of human immunodeficiency virus type 1 env protein recognized solubilized gPr160, but not gp120, in radioimmunoprecipitation assays. Efficient immunoprecipitation of solubilized gp120 by these antibodies did occur in the presence of HuMAb 1125H, directed against a conformational epitope overlapping the CD4-binding site, or its F(ab')2 fragment. In contrast to the inability of the anti-V3 antibodies to immunoprecipitate solubilized gp120, these HuMAbs did bind to gp120 in intact virions; this level of binding increased severalfold in the presence of the F(ab')2 fragment of 1125H. These results demonstrate that neutralization epitopes in the V3 loop are sequestered in soluble gp120 but partly exposed in gPr160 and in virion-associated gp120 and that binding of antibodies to the discontinuous CD4-binding site leads to conformational changes that result in the exposure of V3 epitopes in soluble gp120 and their enhanced accessibility in gPr160 and in virion-associated gp120. Enhanced binding of suboptimal concentrations of 1125H to soluble gp120 was also induced by the presence of an anti-V3 HuMAb, indicating the occurrence of reciprocal allosteric interactions between the V3 loop and the CD4-binding site. It is likely that these effects contribute to the synergistic neutralization of human immunodeficiency virus type 1 previously reported for antibodies directed against these two regions.  相似文献   

8.
Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (相似文献   

9.
Neutralizing antibodies that recognize the human immunodeficiency virus gp120 exterior envelope glycoprotein and are directed against either the third variable (V3) loop or conserved, discontinuous epitopes overlapping the CD4 binding region have been described. Here we report several observations that suggest a structural relationship between the V3 loop and amino acids in the fourth conserved (C4) gp120 region that constitute part of the CD4 binding site and the conserved neutralization epitopes. Treatment of the gp120 glycoprotein with ionic detergents resulted in a V3 loop-dependent masking of both linear C4 epitopes and discontinuous neutralization epitopes overlapping the CD4 binding site. Increased recognition of the native gp120 glycoprotein by an anti-V3 loop monoclonal antibody, 9284, resulted from from single amino acid changes either in the base of the V3 loop or in the gp120 C4 region. These amino acid changes also resulted in increased exposure of conserved epitopes overlapping the CD4 binding region. The replication-competent subset of these mutants exhibited increased sensitivity to neutralization by antibody 9284 and anti-CD4 binding site antibodies. The implied relationship of the V3 loop, which mediates post-receptor binding steps in virus entry, and components of the CD4 binding region may be important for the interaction of these functional gp120 domains and for the observed cooperativity of neutralizing antibodies directed against these regions.  相似文献   

10.
One strategy for the generation of broadly reactive neutralizing antibodies (NA) against human immunodeficiency virus type 1 (HIV-1) primary isolates is to use immunogens that have constrained HIV-1 envelope gp120 conformations reflective of triggered envelope on the surface of virions. A major change in gp120 following binding to CD4 is the enhanced exposure of the CCR5 binding site. One inducer of CCR5 binding site epitopes on gp120 is the human anti-gp120 monoclonal antibody, A32. We have made cross-linked A32-rgp120(89.6) and A32-rgp120(BaL) complexes and have compared their immunogenicities to those of uncomplexed recombinant gp120(BaL) (rgp120(BaL)) and rgp120(89.6). A32-rgp120(89.6) and A32-rgp120(BaL) complexes had stable induced CCR5 binding site expression compared to that of uncomplexed rgp120s. However, the A32-rgp120 complexes had similar capacities in guinea pigs for induction of NA against HIV-1 primary isolates versus that of rgp120 alone. A32-rgp120(89.6) induced antibodies that neutralized 6 out of 11 HIV-1 isolates, while rgp120(89.6) alone induced antibodies that neutralized 4 out of 11 HIV-1 isolates. A32-rgp120(BaL) complexes induced antibodies that neutralized 4 out of 14 HIV-1 isolates while, surprisingly, non-cross-linked rgp120(BaL) induced antibodies that neutralized 9 out of 14 (64%) HIV-1 isolates. Thus, stable enhanced expression of the coreceptor binding site on constrained gp120 is not sufficient for inducing broadly neutralizing anti-HIV-1 NA. Moreover, the ability of HIV-1 rgp120(BaL) to induce antibodies that neutralized approximately 60% of subtype B HIV-1 isolates warrants consideration of using HIV-1 BaL as a starting point for immunogen design for subtype B HIV-1 experimental immunogens.  相似文献   

11.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

12.
Dextran sulfate, heparin, and certain other sulfated polysaccharides potently inhibit the adsorption of HIV to CD4+ cells. The mechanism of this inhibition is unclear and, specifically, it is unknown if these agents act at the level of CD4-gp120 binding. For example, previous reports have demonstrated that dextran sulfate does not inhibit the cell surface binding of anti-CD4 mAb known to be directed at the gp120 binding site. In order to confirm and extend these observations, in the present study, it was shown that dextran sulfate does not inhibit the binding of OKT4A, OKT4C, Leu3a, or B66.6 to CD4+ cells as measured by cytofluorography. Next, recombinant forms of CD4 (rT4) and gp120 (rgp120) were utilized to directly study their molecular interaction in the absence of other viral or cellular structures. Reciprocal solid phase ELISA assays were developed to study directly the effects of sulfated polysaccharides on the binding of rT4 to immobilized rgp120 and vice versa. Dextran sulfate, heparin, and fucoidan, but not chondroitin sulfate, inhibited the binding of rgp120 to rT4. Importantly, dextran sulfate and heparin pre-treatment of immobilized rT4, but not immobilized rgp120, inhibited rT4-rgp120 binding. Taken together, these data suggest that while both sulfated polysaccharides and anti-CD4 mAb inhibit gp120 binding, the sulfated polysaccharides interact with sites on CD4 that are distinct from those with which the antibodies bind.  相似文献   

13.
We examined how asparagine-linked glycans within and adjacent to the V3 loop (C2 and C3 regions) and within the immunologically silent face (V4, C4, and V5 regions) of the human immunodeficiency virus (HIV) SF612 envelope affect the viral phenotype. Five of seven potential glycosylation sites are utilized when the virus is grown in human peripheral blood mononuclear cells, with the nonutilized sites lying within the V4 loop. Elimination of glycans within and adjacent to the V3 loop renders SF162 more susceptible to neutralization by polyclonal HIV(+)-positive and simian/human immunodeficiency virus-positive sera and by monoclonal antibodies (MAbs) recognizing the V3 loop, the CD4- and CCR5-binding sites, and the extracellular region of gp41. Importantly, our studies also indicate that glycans located within the immunologically silent face of gp120, specifically the C4 and V5 regions, also conferred on SF162 resistance to neutralization by anti-V3 loop, anti-CD4 binding site, and anti-gp41 MAbs but not by antibodies targeting the coreceptor binding site. We also observed that the amino acid composition of the V4 region contributes to the neutralization phenotype of SF162 by anti-V3 loop and anti-CD4 binding site MAbs. Collectively, our data support the proposal that the glycosylation and structure of the immunologically silent face of the HIV envelope plays an important role in defining the neutralization phenotype of HIV type 1.  相似文献   

14.
The immune response to viral glycoproteins is often directed against conformation- and/or glycosylation-dependent structures; synthetic peptides and bacterially expressed proteins are inadequate probes for the mapping of such epitopes. This report describes a retroviral vector system that presents such native epitopes on chimeric glycoproteins in which protein fragments of interest are fused to the C terminus of the N-terminal domain of the murine leukemia virus surface protein, gp70. The system was used to express two disulfide-bonded domains from gp120, the surface protein of human immunodeficiency virus type 1 (HIV-1), that include potent neutralization epitopes. The resulting fusion glycoproteins were synthesized at high levels and were efficiently transported and secreted. A fusion protein containing the HXB2 V1/V2 domain was recognized by an HIVIIIB-infected patient serum as well as by 17 of 36 HIV-1 seropositive hemophiliac, homosexual male and intravenous drug user patient sera. Many of these HIV+ human sera reacted with V1/V2 domains from several HIV-1 clones expressed in fusion glycoproteins, indicating the presence of cross-reactive antibodies against epitopes in the V1/V2 domain. Recognition of gp(1-263):V1/V2HXB2 by the HIVIIIB-infected human patient serum was largely blocked by synthetic peptides matching V1 but not V2 sequences, while recognition of this construct by a broadly cross-reactive hemophiliac patient serum was not blocked by individual V1 or V2 peptides or by mixtures of these peptides. A construct containing the V3 domain of the IIIB strain of HIV-1, gp(1-263):V3HXB2, was recognized by sera from a human and a chimpanzee that had been infected by HIVIIIB but not by sera from hemophiliac patients who had been infected with HIV-1 of MN-like V3 serotype. The reactive sera had significantly higher titers when assayed against gp(1-263):V3HXB2 than when assayed against matching V3 peptides. Immunoprecipitation of this fusion glycoprotein by the human serum was only partially blocked by V3 peptide, indicating that this infected individual produced antibodies against epitopes in V3 that were expressed on the fusion glycoprotein but not by synthetic peptides. These data demonstrated that the chimeric glycoproteins described here effectively present native epitopes present in the V1/V2 and V3 domains of gp120 and provide efficient methods for detection of antibodies directed against native epitopes in these regions and for characterization of such epitopes.  相似文献   

15.
Proteolysis associated with recombinant protein expression in Chinese Hamster Ovary (CHO) cells has hindered the development of biologics including HIV vaccines. When expressed in CHO cells, the recombinant HIV envelope protein, gp120, undergoes proteolytic clipping by a serine protease at a key epitope recognized by neutralizing antibodies. The problem is particularly acute for envelope proteins from clade B viruses that represent the major genetic subtype circulating in much of the developed world, including the US and Europe. In this paper, we have identified complement Component 1's (C1s), a serine protease from the complement cascade, as the protease responsible for the proteolysis of gp120 in CHO cells. CRISPR/Cas9 knockout of the C1s protease in a CHO cell line was shown to eliminate the proteolytic activity against the recombinantly expressed gp120. In addition, the C1s−/−MGAT1 CHO cell line, with the C1s protease and the MGAT1 glycosyltransferase knocked out, enabled the production of unclipped gp120 from a clade B isolate (BaL-rgp120) and enriched for mannose-5 glycans on gp120 that are required for the binding of multiple broadly neutralizing monoclonal antibodies (bN-mAbs). The availability of this technology will allow for the scale-up and testing of multiple vaccine concepts in regions of the world where clade B viruses are in circulation. Furthermore, the proteolysis issues caused by the C1s protease suggests a broader need for a C1s-deficient CHO cell line to express other recombinant proteins that are susceptible to serine protease activity in CHO cells. Similarly, the workflow described here to identify and knockout C1s in a CHO cell line can be applied to remedy the proteolysis of biologics by other CHO proteases.  相似文献   

16.
We have probed the structures of monomeric and oligomeric gp120 glycoproteins from the LAI isolate of human immunodeficiency virus type 1 (HIV-1) with a panel of monoclonal antibodies (MAbs); most of these MAbs are directed against continuous epitopes. On native monomeric gp120, most of the first conserved (C1) domain is accessible to MAbs, although some regions of C1 are relatively inaccessible. All of the MAbs directed against the C2, C3, and C5 domains bind preferentially to denatured monomeric gp120, indicating that these regions of gp120 are poorly accessible on the native monomer, although the extreme C terminus in C5 is well exposed. Segments of the V1, V2, and V3 loops are exposed on the surface of monomeric gp120, although the base of the V3 loop is inaccessible. A portion of C4 is also available for MAb binding on monomeric gp120, as is the extreme C terminus in C5. However, on oligomeric gp120-gp41 complexes, only the V2 and V3 loops (and perhaps V1) are well exposed and a segment of the C4 region is partially exposed; continuous epitopes in C1 and C5 that are accessible to antibodies on monomeric gp120 are occluded on the oligomer. Although deletion of the V1, V2, and V3 loops resulted in increased exposure of several discontinuous epitopes overlapping the CD4-binding site, the exposure of most continuous epitopes on the monomeric gp120 glycoprotein was not affected. These results imply a HIV-1 gp120 structure in which the conserved continuous determinants are inaccessible; in some cases, this inaccessibility is due to intramolecular interactions between conserved regions, and in other cases, it is due to intermolecular interactions with other components of the glycoprotein spike. These findings have implications for the design of subunit vaccines based on gp120.  相似文献   

17.
To identify structural constraints and amino acid sequences important for antibody recognition of the third variable domain (V3) of HIV-1 gp120, we have studied the solution conformation of three 35-mer circular V3 loop peptides derived from HIV-1 strains which differ in syncytium- (SI) and non-syncytium-inducing (NSI) capacity. In addition to 2D NMR and CD analyses, fluid- and solid-phase immunoassays were performed using V3-specific antibodies to V3 peptides and gp120 derived from different strains of HIV-1. NMR and CD spectroscopy indicated that circular and linear V3 loops exist in water as a dynamic ensemble of multiple conformations. Amino acid substitutions and biochemical modifications of the V3 loop were found to affect antibody binding depending on the presentation of the antigens. From NMR observations and immunological experiments, we provide evidence for a V3 loop specific monoclonal antibody interaction which is directed predominantly against linear epitopes rather than against discontinuous epitopes. The absence of a single defined solution conformation of 35-mer circular V3 peptides should be taken into account when using V3-related peptides to investigate structural elements in the V3 domain of the gp120 envelope protein of HIV-1 involved in biological processes of the virus.  相似文献   

18.
We have used an indirect-capture enzyme-linked immunosorbent assay to quantitate the reactivity of sera from human immunodeficiency virus type 1 (HIV-1)-infected humans with native recombinant gp120 (HIV-1 IIIB or SF-2) or with the gp120 molecule (IIIB or SF-2) denatured by being boiled in the presence of dithiothreitol with or without sodium dodecyl sulfate. Denaturation of IIIB gp120 reduced the titers of sera from randomly selected donors by at least 100-fold, suggesting that the majority of cross-reactive anti-gp120 antibodies present are directed against discontinuous or otherwise conformationally sensitive epitopes. When SF-2 gp120 was used, four of eight serum samples reacted significantly with the denatured protein, albeit with ca. 3- to 50-fold reductions in titer. Only those sera reacting with denatured SF-2 gp120 bound significantly to solid-phase-adsorbed SF-2 V3 loop peptide, and none bound to IIIB V3 loop peptide. Almost all antibody binding to reduced SF-2 gp120 was blocked by preincubation with the SF-2 V3 loop peptide, as was about 50% of the binding to native SF-2 gp120. When sera from a laboratory worker or a chimpanzee infected with IIIB were tested, the pattern of reactivity was reversed, i.e., there was significant binding to reduced IIIB gp120, but not to reduced SF-2 gp120. Binding of these sera to reduced IIIB gp120 was 1 to 10% that to native IIIB gp120 and was substantially decreased by preincubation with IIIB (but not SF-2) V3 loop peptide. To analyze which discontinuous or conformational epitopes were predominant in HIV-1-positive sera, we prebound monoclonal antibodies (MAbs) to IIIB gp120 and then added alkaline phosphatase-labelled HIV-1-positive sera. MAbs (such as 15e) that recognize discontinuous epitopes and compete directly with CD4 reduced HIV-1-positive sera binding by about 50%, whereas neutralizing MAbs to the C4, V2, and V3 domains of gp120 were either not inhibitory or only weakly so. Thus, antibodies to the discontinuous CD4-binding site on gp120 are prevalent in HIV-1-positive sera, antibodies to linear epitopes are less common, most of the antibodies to linear epitopes are directed against the V3 region, and most cross-reactive antibodies are directed against discontinuous epitopes, including regions involved in CD4 binding.  相似文献   

19.
Results and conclusions concerning the ability of HIV glycoprotein (gp) 120 to stimulate monokine secretion have been equivocal, based on observations using natural gp120 derived from infected human cells and a Chinese hamster ovary (CHO) cell-derived recombinant fusion protein. Current studies were designed to determine whether differences in recombinant gp120 proteins could result in failure to trigger monokine production. We found that natural gp120 could stimulate monocytes to release TNF-alpha, IL-1 beta, IL-6, and granulocyte-macrophage-CSF, and this effect could be blocked with soluble CD4. Full-length rgp120 either expressed from an adenovirus vector and purified from infected human cells, or derived from CHO cells, could function similarly. In contrast, full-length recombinant envelope protein expressed in a baculovirus system and a CHO cell-derived recombinant fusion protein tested previously, consistently failed to stimulate monokine production. The stimulatory capacity of both natural and full-length CHO cell-derived gp120 was eliminated by heating at 100 degrees C, and could be blocked with excess CHO cell-derived gp120 fusion protein. Inasmuch as the baculovirus-expressed gp120 and the CHO cell-derived recombinant fusion protein can bind to CD4, these results suggest that HIV gp120 binding to CD4 on the monocyte surface may of itself be insufficient for stimulation of monokine secretion. Therefore, primary protein structure, as well as posttranslational protein modifications, may determine this activity.  相似文献   

20.
The rabbit is a commonly used animal model in studying antibody responses in HIV/AIDS vaccine development. However, no rabbit monoclonal antibodies (MAbs) have been developed previously to study the epitope-specific antibody responses against HIV-1 envelope (Env) glycoproteins, and little is known about how the rabbit immune system can mimic the human immune system in eliciting such antibodies. Here we present structural analyses of two rabbit MAbs, R56 and R20, against the third variable region (V3) of HIV-1 gp120. R56 recognizes the well-studied immunogenic region in the V3 crown, while R20 targets a less-studied region at the C terminus of V3. By comparison of the Fab/epitope complex structures of these two antibodies raised by immunization with that of the corresponding human antibodies derived from patients chronically infected with HIV-1, we found that rabbit antibodies can recognize immunogenic regions of gp120 and mimic the binding modes of human antibodies. This result can provide new insight into the use of the rabbit as an animal model in AIDS vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号