首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low concentrations of oxidized low density lipoprotein (OxLDL) are cytoprotective for phagocytes, although the underlying mechanisms remain unclear. We investigated signaling pathways used by OxLDL to attenuate apoptosis in monocytic cells. OxLDL at 25-50 mug/ml inhibited staurosporine-induced apoptosis in THP-1 cells and mouse peritoneal macrophages, and it was cytoprotective in human primary monocytes upon serum withdrawal. Attenuated cell demise was reversed by blocking extracellular signal-regulated kinase (ERK) signaling. Translocation of cytochrome c to the cytosol was attenuated by OxLDL, which again demanded ERK signaling. Analysis of Bcl-2 family proteins revealed phosphorylation of Bad at serine 112 as well as ERK-dependent inhibition of Mcl-1 degradation. Although the formation of reactive oxygen species (ROS) is an established signal generated by OxLDL, ROS scavengers did not interfere with cell protection by OxLDL. Thus, activation of the ERK signaling pathway by OxLDL is important to protect phagocytes from apoptosis.  相似文献   

2.
Oxidative modifications render low density lipoprotein cytotoxic and enhance its propensity to aggregate and fuse into particles similar to those found in atherosclerotic lesions. We showed previously that aggregation of oxidized LDL (OxLDL) promotes the transformation of human macrophages into lipid-laden foam cells (Asmis, R., and J. Jelk. 2000. Large variations in human foam cell formation in individuals. A fully autologous in vitro assay based on the quantitative analysis of cellular neutral lipids. Atherosclerosis. 148: 243-253). Here, we tested the hypothesis that aggregation of OxLDL enhances its clearance by human macrophages and thus may protect macrophages from OxLDL-induced cytotoxicity. We found that increased aggregation of OxLDL correlated with decreased macrophage injury. Using 3H-labeled and Alexa546-labeled OxLDL, we found that aggregation enhanced OxLDL uptake and increased cholesteryl ester accumulation but did not alter free cholesterol levels in macrophages. Acetylated LDL was a potent competitor of aggregated oxidized LDL (AggOxLDL) uptake, suggesting that scavenger receptor A plays an important role in the clearance of AggOxLDL. Inhibitors of actin polymerization, cytochalasin B, cytochalasin D, and latrunculin A, also prevented AggOxLDL uptake and restored OxLDL-induced cytotoxicity. This suggests that OxLDL-induced macrophage injury does not require OxLDL uptake and may occur on the cell surface. Our data demonstrate that aggregation of cytotoxic OxLDL enhances its clearance by macrophages without damage to the cells, thus allowing macrophages to avoid OxLDL-induced cell injury.  相似文献   

3.
Achilles tendon xanthomas are associated with increased cardiovascular risk in patients with familial hypercholesterolemia (FH). Oxidized low density lipoprotein (OxLDL), the antibodies against OxLDL, and the LDL-associated phospholipase A(2) (Lp-PLA(2)) may play important roles in atherogenesis. We investigated the possible association between plasma levels of OxLDL, Lp-PLA(2) activity, and autoantibody titers against various types of mildly OxLDL with Achilles tendon thickness (ATT). ATT was determined by sonography in 80 unrelated heterozygous FH patients. Three different types of mildly OxLDL were prepared: OxLDL(L), OxLDL(P), and OxLDL(D), at the end of the lag, propagation, and decomposition phases of oxidation, respectively. Similar types of OxLDL were also prepared after inactivation of the LDL-associated Lp-PLA(2). These types were denoted OxLDL(-)(L), OxLDL(-)(P), and OxLDL(-)(D). FH patients exhibited significantly higher plasma OxLDL levels and serum IgG titers against OxLDL(P) and OxLDL(D) compared with 40 normolipidemic apparently healthy controls. ATT values were positively correlated with autoantibody titers against OxLDL(P) and OxLDL(D); however, in multiple regression analysis, ATT was independently associated only with the autoantibody titers against OxLDL(D). We conclude that the IgG autoantibody titers against OxLDL(D) but not OxLDL or Lp-PLA(2) may play an important role in the pathogenesis of Achilles tendon xanthomas in FH patients.  相似文献   

4.
Oxidized phosphatidylcholine (OxPC) formed in oxidized low density lipoprotein (OxLDL) is thought to be involved in the development of atherosclerosis. OxPC has been found in foam cells in atherosclerotic lesions and suggested to be the epitope for OxLDL recognition by macrophages. OxPC is present as a complex with apolipoprotein B (apoB) in OxLDL, since some OxPC can bind with proteins. In the current study, the intracellular fate of OxPC-apoB complexes after internalization of OxLDL by macrophages was investigated. Murine macrophage cell line J774.1 was incubated with either OxLDL or acetylated LDL for 24 h, then the cells were further incubated for up to 24 h in new medium without lipoprotein. Modified apoB in the cells was quantitated by sandwich ELISA using monoclonal antibodies against OxPC and apoB. Intracellular OxLDL decreased rapidly for the first 4 h to approx. 20% of that before medium change, with the apparent metabolism of OxPC-apoB complex ceasing. OxPC-apoB complexes that remained in the cells after 24 h chasing increased as the period of OxLDL loading in macrophages prolongs. Acetylated LDL in the cells decreased quickly and disappeared after 4 h of chasing. Subcellular fractionation using sucrose density gradient ultracentrifugation of macrophages, which had already accumulated OxPC-apoB complexes by 24 h of incubation with OxLDL and further 24 h chasing, showed that the complex was co-localized with endosomal and lysosomal markers. Immunohistochemical double staining studies demonstrated that OxPC and apoB co-localize in foam cells in early atherosclerotic lesions obtained from human coronary artery. These results suggest that OxPC-apoB complexes originating from OxLDL accumulate in foam cells in human atherosclerotic lesions as well as in macrophages in vitro.  相似文献   

5.
Hepatitis C virus (HCV)-mediated chronic liver disease is a global health problem, and inflammation is believed to be an important player in disease pathogenesis. HCV infection often leads to severe fibrosis/cirrhosis and hepatocellular carcinoma, although the mechanisms for advancement of disease are not fully understood. The proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 have critical roles in establishment of inflammation. In this study, we examined induction of IL-1β/IL-18 secretion following HCV infection. Our results demonstrated that monocyte-derived human macrophages (THP-1) incubated with cell culture-grown HCV enhance the secretion of IL-1β/IL-18 into culture supernatants. A similar cytokine release was also observed for peripheral blood mononuclear cell (PBMC)-derived primary human macrophages and Kupffer cells (liver-resident macrophages) upon incubation with HCV. THP-1 cells incubated with HCV led to caspase-1 activation and release of proinflammatory cytokines. Subsequent studies demonstrated that HCV induces pro-IL-1β and pro-IL-18 synthesis via the NF-κB signaling pathway in macrophages. Furthermore, introduction of HCV viroporin p7 RNA into THP-1 cells was sufficient to cause IL-1β secretion. Together, our results suggested that human macrophages exposed to HCV induce IL-1β and IL-18 secretion, which may play a role in hepatic inflammation.  相似文献   

6.
Most studies of antibodies to oxidized LDL have been undertaken in patients with different diseases and cardiovascular risk factors. However, very few studies have researched the distribution and determining factors of antibodies to oxidized LDL in the general population. A total of 1,354 persons (817 females and 537 males) aged 5-65 years were included in this study. They were selected randomly from the population census of Málaga, in southern Spain. The females had lower levels of total cholesterol and triglycerides and higher levels of HDL-cholesterol and a very significant increase (P < 0.0001) in levels of anti-oxidized LDL [low density lipoprotein modified by malondialdehyde (MDA-LDL)] antibodies but no difference in levels of immune complexes consisting of LDL and IgG antibodies (anti-LDL immune complex). Younger persons (16-35 years) had higher levels of anti-oxidized LDL (MDA-LDL) antibodies than persons older than 35 years (P = 0.05). Levels of immune complexes were significantly higher (P = 0.05) in persons aged 5-15 years than in persons older than 40 years. A very weak association was found between levels of anti-oxidized LDL (MDA-LDL) antibodies and anti-LDL immune complexes. The higher prevalence of anti-oxidized LDL (MDA-LDL) antibodies in females and young persons is in agreement with studies that found an inverse association between atherosclerosis and the level of these antibodies.  相似文献   

7.
Oxidized low density lipoproteins (OxLDL) are known to promote atherosclerosis, but it is only recently that OxLDL have been associated with alterations of the functions of bone-forming osteoblasts and osteoporosis. Although high density lipoproteins (HDL) are recognized for their anti-atherogenic action, there is less information about their ability to protect against osteoporosis. Therefore, we investigated the capacity of HDL3 to prevent the cell death induced by OxLDL in human osteoblastic cells. Simultaneous exposure of the cells to HDL3 and OxLDL abolished the reduction of cell viability monitored by MTT activity measurement and the induction of apoptosis determined by annexin V staining indicating that HDL3 prevent the apoptosis of osteoblasts induced by OxLDL. This protection correlated with the displacement by HDL3 of OxLDL association to osteoblasts, signifying that OxLDL binding and/or internalization are/is necessary for their cytotoxic effects. We also found that exposition of osteoblastic cells to HDL3 prior to incubation with OxLDL reduced cell death and preserved the lysosomal integrity. This protection was correlated with an increase of SR-BI expression, a modification of OxLDL metabolism with less global uptake of OxLDL and greater selective uptake of cholesterol from OxLDL. These results strongly suggest that, as for atherosclerosis, HDL may exert beneficial actions on bone metabolism.  相似文献   

8.
Paragonimus westermani is a tissue migrating parasite in the early stage until arriving at lung, and most of the parasites spend their life spans there. Considerable immune responses including activation of macrophages are taken place during the residence of parasites in the host. However, concerning the immunologic defense mechanisms of the host against this parasite, only a few document is available so far. In this study, the cytotoxic effect of peritoneal macrophages under the presence of antibody and/or complement against metacercariae of P. westermani was investigated in vitro. Metacercariae were collected from the crayfish, Cambaroides similis and hatched out in Tyrode solution (pH 7.4). Plastic adherent cells from normal or infected rat (Wistar) peritoneal exudates were used as experimental macrophages. Polyclonal antibodies were obtained from infected rats and a cat. Cat IgG was fractioned with ion exchange chromatography. Fresh rabbit complement was used according to experimental scheme. Various combinations of peritoneal macrophages, normal or infected rat serum, complement and cat IgG were incubated at 36 degrees C in 5% CO2 incubator for 6, 14, 24 and 48 hours. The results obtained were as follows: 1. P. westermani infection activated peritoneal macrophages non-specifically and this activation induced increases of cell adherence and cytotoxicity on metacercariae. 2. In the presence of infected rat serum the antibody-dependent cell-mediated cytotoxicity of peritoneal macrophages on metacercariae was significantly increased and showed a peak at 6-hour incubation. But the cytotoxic effect was markedly reduced after inactivation of complement and heat-labile IgE antibody by the heating of infected serum at 56 degrees C for 30 minutes. 3. The highest cytotoxic effect (100%) of concomitant incubation with IgG and complement showed 24 hours after incubation, although cell adherence was relatively low at 6-hour incubation and 0% at 24-hour incubation. 4. Coordinative functions of complement with serum and IgG were effective in cell adherence and in cytotoxicity, but it is not clear the independent role of complement on the macrophage-mediated cytotoxicity in this study. With these results it is assumed that P. westermani infection can induce the non-specific activation of peritoneal macrophages, and serum antibodies including IgE antibody might enhance the cytotoxicity by macrophages.  相似文献   

9.
Oxidized low density lipoprotein (OxLDL) has multiple proatherogenic effects, including induction of apoptosis. We have recently shown that OxLDL markedly downregulates insulin-like growth factor-1 receptor (IGF-1R) in human aortic smooth muscle cells, and that IGF-1R overexpression blocks OxLDL-induced apoptosis. We hypothesized that specific OxLDL-triggered signaling events led to IGF-1R downregulation and apoptosis. We examined OxLDL signaling pathways and found that neither IGF-1R downregulation nor the proapoptotic effect was blocked by inhibition of OxLDL-triggered extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (MAPK), or peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways, as assessed using specific inhibitors. However, antioxidants, polyethylene glycol catalase, superoxide dismutase, and Trolox completely blocked OxLDL downregulation of IGF-1R and OxLDL-induced apoptosis. Nordihydroguaiaretic acid, AA-861, and baicalein, which are lipoxygenase inhibitors and also have antioxidant activity, blocked IGF-1R downregulation and apoptosis as well as reactive oxygen species (ROS) production. These results suggest that OxLDL enhances ROS production possibly through lipoxygenase activity, leading to IGF-1R downregulation and apoptosis. Furthermore, anti-CD36 scavenger receptor antibody markedly inhibited OxLDL-induced IGF-1R downregulation and apoptosis as well as ROS production. In conclusion, our data demonstrate that OxLDL downregulates IGF-1R via redox-sensitive pathways that are distinct from OxLDL signaling through MAPK- and PPARgamma-involved pathways but may involve a CD36-dependent mechanism.  相似文献   

10.
Previous in vitro studies have revealed that oxidized low density lipoprotein (OxLDL) has negative effects on the proliferation and activity of endothelial progenitor cells (EPCs). Here, we evaluated the effect of OxLDL on the therapeutic potential of EPCs in ischemia-induced neovascularization. EPCs derived from mobilized human peripheral blood mononuclear cells were cultured without or with OxLDL before transplantation. Hindlimb ischemia models were surgically induced in athymic nude mice, which then received an intracardiac injection of 3 x 10(5) EPCs. By laser Doppler perfusion image and ischemia damage score, we found that blood perfusion and ischemia damage were less well recovered in the OxLDL-treated EPC transplantation group than in controls. Histological examination showed fewer transplanted EPCs and lower capillary density in ischemic tissue. Local delivery of Stromal cell-derived factor (SDF-1) restored this defect and improved blood perfusion by recruiting OxLDL-treated EPCs to the ischemic area and increasing host capillary density. These results provide for the first time direct evidence that OxLDL impaired the therapeutic potential of EPCs in ischemia-induced neovascularization through an inhibitory effect on the migration, adhesion, and incorporation of EPCs into vasculature and/or entrapment in the perivascular region in vivo. A therapeutic strategy based on SDF-1 administration ameliorated such defects and improved postischemic neovascularization.  相似文献   

11.
Raman spectroscopic imaging was used to investigate the uptake of oxidized LDLs (oxLDLs) by human macrophages. To better understand the endocytic pathway and the intracellular fate of modified lipoproteins is of foremost interest with regard to the development of atherosclerotic plaques. To obtain information on the storage process of lipids caused by oxLDL uptake, Raman spectroscopic imaging was used because of its unique chemical specificity, especially for lipids. For the present study, a protocol was established to incorporate deuterated tripalmitate into oxLDL. Subsequently, human THP-1 macrophages were incubated for different time points and their chemical composition was analyzed using Raman spectroscopic imaging. β-Carotene was found to be a reliable marker molecule for the uptake of lipoproteins into macrophages. In addition, lipoprotein administration led to small endocytic vesicles with different concentrations of deuterated lipids within the cells. For the first time, the translocation of deuterated lipids from endocytic vesicles into lipid droplets over time is reported in mature human THP-1 macrophages.  相似文献   

12.
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.  相似文献   

13.
Macrophage foam cells in atherosclerotic lesions accumulate substantial cholesterol stores within large, swollen lysosomes. Previous studies with mildly oxidized low density lipoprotein (OxLDL)-treated THP-1 macrophages suggest an initial buildup of free cholesterol (FC), followed by an inhibition of lysosomal cholesteryl ester (CE) hydrolysis and a subsequent lysosomal accumulation of unhydrolyzed lipoprotein CE. We examined whether other potential sources of cholesterol found within atherosclerotic lesions could also induce similar lysosomal accumulation. Biochemical analysis combined with microscopic analysis showed that treatment of THP-1 macrophages with aggregated low density lipoprotein (AggLDL) or CE-rich lipid dispersions (DISP) produced a similar lysosomal accumulation of both FC and CE. Co-treatment with an ACAT inhibitor, CP113,818, confirmed that the CE accumulation was primarily the result of the inhibition of lysosomal CE hydrolysis. The rate of unhydrolyzed CE buildup was more rapid with DISP than with AggLDL. However, with both treatments, FC appeared to accumulate in lysosomes before the inhibition in hydrolysis and CE accumulation, a sequence shared with mildly OxLDL. Thus, lysosomal accumulation of FC and CE can be attributable to more general mechanisms than just the inhibition of hydrolysis by oxidized lipids.  相似文献   

14.
Oxidized LDL (oxLDL) promotes lipid accumulation as well as growth and survival signaling in macrophages. OxLDL uptake is mainly due to scavenger receptors SR-AI/II and CD36. However, other scavenger receptors such as lectin-like oxLDL receptor-1 (LOX-1) may also play a role. We used mice with targeted inactivation of the LOX-1 gene to define the role of this receptor in the uptake of oxLDL and in activation of survival pathways. There was no difference in uptake or degradation of 125I-oxLDL in unstimulated macrophages from wild-type and LOX-1 knockout mice and no difference in the rate of clearance of oxLDL from plasma in vivo. However, when expression of LOX-1 was induced with lysophosphatidylcholine, oxLDL uptake and degradation increased 2-fold in wild-type macrophages but did not change in LOX-1 knockout macrophages. Macrophages lacking LOX-1 showed the same stimulation of PKB phosphorylation and enhancement of survival by oxLDL as wild-type cells. These data show that LOX-1 does not alter the uptake of oxLDL in unstimulated macrophages and is not essential for the pro-survival effect of oxLDL in these cells. However, LOX-1 expression is highly inducible by lysophosphatidylcholine and pro-inflammatory cytokines, and if that occurred in macrophages within atheromas, LOX-1 could substantially increase oxLDL uptake by lesion macrophages.  相似文献   

15.
Lipoprotein oxidation plays an important role in pathogenesis of atherosclerosis. Oxidized low density lipoprotein (OxLDL) induces profound inflammatory responses in vascular cells, such as production of monocyte chemoattractant protein-1 (MCP-1) [chemokine (C-C motif) ligand 2], a key chemokine in the initiation and progression of vascular inflammation. Here we demonstrate that OxLDL also binds MCP-1 and that the OxLDL-bound MCP-1 retains its ability to recruit monocytes. A human MCP-1 mutant in which basic amino acids Arg-18 and Lys-19 were replaced with Ala did not bind to OxLDL. The MCP-1 binding to OxLDL was inhibited by the monoclonal antibody E06, which binds oxidized phospholipids (OxPLs) in OxLDL. Because OxPLs are carried by lipoprotein(a) [Lp(a)] in human plasma, we tested to determine whether Lp(a) binds MCP-1. Recombinant wild-type but not mutant MCP-1 added to human plasma bound to Lp(a), and its binding was inhibited by E06. Lp(a) captured from human plasma contained MCP-1 and the Lp(a)-associated endogenous MCP-1 induced monocyte migration. These results demonstrate that OxLDL and Lp(a) bind MCP-1 in vitro and in vivo and that OxPLs are major determinants of the MCP-1 binding. The association of MCP-1 with OxLDL and Lp(a) may play a role in modulating monocyte trafficking during atherogenesis.  相似文献   

16.
巫芮  聂奎  方仁东 《微生物学报》2017,57(3):333-340
肺炎链球菌溶血素(Pneumolysin,PLY)是肺炎链球菌的一种重要毒力因子,包含4个结构域,是胆固醇依赖性细胞溶血素(CDCs)的家族成员之一。PLY可广泛作用于宿主组织细胞,发挥细胞毒性作用。PLY可活化补体经典途径,诱导巨噬细胞和单核细胞等产生细胞因子,介导机体免疫应答过程。PLY是肺炎链球菌蛋白疫苗和相关小分子药物研制的重要靶标。本文就PLY的结构、功能及相关疫苗的最新研究进展进行综述。  相似文献   

17.
Herpes simplex virus (HSV)-infected cells can activate the human complement system without interference of specific anti-HSV antibodies. Analysis by flow cytometry showed that C3-like molecules were deposited on the membrane of the infected cell when incubated with human serum without specific antibodies. Depletion of calcium to block the classical pathway of the complement system had no effect on fluorescence intensity. The complement activation could be blocked by chelating both calcium and magnesium or by heating the serum. Furthermore, in the fluid phase C3 was converted to C3b by infected cells and not by uninfected cells. The antibody-independent activation did not lead to lysis of the virus-infected fibroblasts, indicating that the complement cascade is abrogated before formation of the membrane attack complex. This was also confirmed by measurement of the 50% hemolytic complement activities for total and alternative pathways. Polymorphonuclear leukocytes attached to infected fibroblasts after incubation of these fibroblasts with intact complement. This is most probably mediated by complement receptor binding of C3b and C3bi which is deposited on the membrane of the HSV-infected cell. Both type 1 and type 2 HSVs showed the same characteristics in complement activation and thereby mediated polymorphonuclear leukocyte adherence.  相似文献   

18.
Atherosclerotic disease is a leading cause of morbidity and mortality in developed countries, and oxidized LDL (OxLDL) plays a key role in the formation, rupture, and subsequent thrombus formation in atherosclerotic plaques. In the current study, anti-mouse OxLDL polyclonal antibody and nonspecific IgG antibody were conjugated to polyethylene glycol-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, and a carotid perivascular collar model in apolipoprotein E-deficient mice was imaged at 7.0 Tesla MRI before contrast administration and at 8 h and 24 h after injection of 30 mg Fe/kg. The results showed MRI signal loss in the carotid atherosclerotic lesions after administration of targeted anti-OxLDL-USPIO at 8 h and 24 h, which is consistent with the presence of the nanoparticles in the lesions. Immunohistochemistry confirmed the colocalization of the OxLDL/macrophages and iron oxide nanoparticles. The nonspecific IgG-USPIO, unconjugated USPIO nanoparticles, and competitive inhibition groups had limited signal changes (p < 0.05). This report shows that anti-OxLDL-USPIO nanoparticles can be used to directly detect OxLDL and image atherosclerotic lesions within 24 h of nanoparticle administration and suggests a strategy for the therapeutic evaluation of atherosclerotic plaques in vivo.  相似文献   

19.
Abdominal obesity is associated with a decreased plasma concentration of HDL cholesterol and with qualitative modifications of HDL, such as triglyceride enrichment. Our aim was to determine, in isolated aorta rings, whether HDL from obese subjects can counteract the inhibitory effect of oxidized low density lipoprotein (OxLDL) on endothelium-dependent vasodilation as efficiently as HDL from normolipidemic, lean subjects. Plasma triglycerides were 74% higher (P < 0.005) in obese subjects compared with controls, and apolipoprotein A-I (apoA-I) and HDL cholesterol concentrations were 12% and 17% lower (P < 0.05), respectively. HDL from control subjects significantly reduced the inhibitory effect of OxLDL on vasodilation [maximal relaxation (E(max)) = 82.1 +/- 8.6% vs. 54.1 +/- 8.1%; P < 0.0001], but HDL from obese subjects had no effect (E(max) = 47.2 +/- 12.5% vs. 54.1 +/- 8.1%; NS). In HDL from abdominally obese subjects compared with HDL from controls, the apoA-I content was 12% lower (P < 0.05) and the triglyceride-to-cholesteryl ester ratio was 36% higher (P = 0.08)). E(max)(OxLDL + HDL) was correlated with HDL apoA-I content and triglyceride-to-cholesteryl ester ratio (r = 0.36 and r = -0.38, respectively; P < 0.05). We conclude that in abdominally obese subjects, the ability of HDL to counteract the inhibitory effect of OxLDL on vascular relaxation is impaired. This could contribute to the increased cardiovascular risk observed in these subjects.  相似文献   

20.
Electronegative LDL [LDL(–)] is a minor modified LDL subfraction present in blood with inflammatory effects. One of the antiatherogenic properties of HDL is the inhibition of the deleterious effects of in vitro modified LDL. However, the effect of HDL on the inflammatory activity of LDL(–) isolated from plasma is unknown. We aimed to assess the putative protective role of HDL against the cytokine released induced in monocytes by LDL(–). Our results showed that LDL(–) cytokine release was inhibited when LDL(–) was coincubated with HDL and human monocytes and also when LDL(–) was preincubated with HDL and reisolated prior to cell incubation. The addition of apoliprotein (apo)AI instead of HDL reproduced the protective behavior of HDL. HDL preincubated with LDL(–) promoted greater cytokine release than native HDL. Incubation of LDL(–) with HDL decreased the electronegative charge, phospholipase C-like activity, susceptibility to aggregation and nonesterified fatty acid (NEFA) content of LDL(–), whereas these properties increased in HDL. NEFA content in LDL appeared to be related to cytokine production because NEFA-enriched LDL induced cytokine release. HDL, at least in part through apoAI, inhibits phospholipase-C activity and cytokine release in monocytes, thereby counteracting the inflammatory effect of LDL(–). In turn, HDL acquires these properties and becomes inflammatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号