首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct exposure, negative chemical ionisation, chloride-attachment mass spectrometry of trehalose and sucrose gave abundant chloride-attached molecular ions. The same feature was observed when these sugars were subjected to fast-atom bombardment (f.a.b.) in a glycerol matrix containing ammonium chloride. No characteristic fragment ion was found when trehalose was analysed by either method. In contrast, sucrose gave intense chloride-containing fragments, arising by glycosidic cleavage, when analysed by the first method, whereas such cleavage was not detectable by f.a.b.-ammonium chloride analysis. However, the mass-analysed ion kinetic energy (m.i.k.e.) spectra of the (M + Cl)- ions from either trehalose and sucrose, generated under f.a.b.-ammonium chloride conditions, showed glycosidic cleavage reactions in addition to a large loss of HCl. These cleavage reactions might be attributed to SN2-like reactions on the acetal carbon atom and to base-induced eliminations, and they were enhanced by collision-induced dissociations. However, the relative abundance of such glycosidic cleavages from the ionic state would be too weak to explain the presence of the large chloride-containing fragments in the direct exposure spectra of sucrose. Thus, these ions were mainly produced by a thermal cleavage followed by chloride-attachment reactions.  相似文献   

2.
A method has been developed for the analysis of derivatized diradylglycerols obtained from glycerophosphocholine (GPC) of transformed murine bone marrow-derived mast cells that provided high performance liquid chromatography (HPLC) separation of GPC subclasses and molecular species separation with on-line quantitation using UV detection. In addition, the derivatized diradylglycerol species were unequivocably identified by continuous flow fast-atom bombardment mass spectrometry. GPC was initially isolated by thin-layer chromatography (TLC), the phosphocholine group was hydrolyzed, and the resultant diradylglycerol was derivatized with 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin (CMMC). After separation of the derivatized subclasses by normal phase HPLC, the individual molecular species of the alkylacyl and diacyl subclasses were quantitated and collected during a subsequent reverse phase HPLC step. With an extinction coefficient of 14,700 l mol-1 cm-1 at a wavelength detection of 320 nm, the CMMC derivatives afforded sensitive UV detection (100 pmol) and quantitation of the molecular species. Continuous flow fast-atom bombardment mass spectrometry of the alkylacyl CMMC derivatives yielded abundant [MH]+ ions and a single fragment ion formed by loss of alkylketene from the sn-2 acyl group, [MH-(R = C = O)]+. No fragmentation of the sn-1 alkyl chain was observed. Diacyl derivatives also produced abundant [MH]+ ions plus two fragment ions arising from loss of RCOOH from each of the acyl substituents and two fragment ions from the loss of alkyketene from each acyl group. Individual molecular species substituents were assigned from these ions.  相似文献   

3.
Mass spectra of a series of chloro- and nitrophenylglucuronides by liquid secondary ion (LSI) mass spectrometry were obtained. In the positive ion mode class characteristic fragmentations and adduct ions are observed only in the presence of alkali salt additives. No additives were necessary in the negative ion mode to see abundant class characteristic [M-H]- and aglycone fragment ions. Cluster ion formation was found to be prominent but only in the negative ion mode.  相似文献   

4.
Under negative ionization conditions, nominal mass calibration of the fast bombardment high field mass spectrometer and data system was accomplished using cesium iodide/glycerol as a reference. Mass calibration at --8 kV accelerating potential extends from m/z 387 to m/z 2170 using xenon fast atoms. Negative xenon FAB mass spectra for human angiotensin I and human gastrin I complement their positive fast atom bombardment spectra. Negative xenon fast atom bombardment spectra of underivatized peptides exhibit molecular proton-abstracted ion envelopes and structurally significant fragment ions. Peptide mixture analysis under negative xenon fast atom bombardment reveals peptide molecular ion envelopes of higher relative intensities than under positive xenon fast atom bombardment.  相似文献   

5.
T Kasama  S Handa 《Biochemistry》1991,30(22):5621-5624
Negative ion fast atom bombardment, low-energy collision-activated dissociation, and tandem mass spectrometry techniques were applied for the structural elucidation of gangliosides. The mass spectra were simplified by selecting a single molecular ion or fragment ion in the analysis of mixtures, and interference by background signals from the liquid matrix could be avoided. Introduction of collision-activated dissociation produced abundant fragment ions convenient for structural analysis. In the daughter scan mode, ions were produced by cleavage of the glycosidic bonds, and not by cleavage at the sugar ring. These ions all contain ceramide moieties, except the sialic acid fragment ion. In the parent scan mode, product ions resulting from cleavage at the sugar ring were detected beside the ions resulting from cleavage at the glycosidic bonds, and ions of oligosaccharide fragments were also detected. In parent scan mode spectra of gangliosides based on the sialic acid ion, all ions contained a sialic acid residue, and the observed ions were similar to those obtained in the high-energy collision-activated dissociation daughter scan mode. These results indicate the usefulness of low-energy collision-activated dissociation tandem mass spectrometry in the daughter and parent scan modes for the analysis of ganglioside structure, in combination with fast atom bombardment mass spectrometry and high-energy collision-activated dissociation mass spectrometry.  相似文献   

6.
The high bladder toxicity of the alkylating oxazaphosphorine anticancer drugs, cyclophosphamide and ifosfamide is effectively reduced by the concomitant administration of mesna (sodium 2-mercaptoethane sulphonate). The formation and rapid urinary excretion of conjugates of the activated (4-hydroxylated) oxazaphosphorine metabolites with mesna has been suggested as the pharmacological basis for the selective detoxification, but separation and identification of such metabolites in vivo have been extremely difficult due to their high polarity and chemical lability. In this study an ion-pair extraction procedure in combination with positive and negative ion fast atom bombardment mass spectrometry has been developed which enabled the identification and quantification of the conjugation products of activated oxazaphosphorine metabolites with mesna in urine. The conjugates extracted as the tetra-n-butylammonium salts are directly identified by their characteristic positive molecular ion adducts and fragment ions, and the corresponding abundant molecular anions. The pattern of molecular and fragment ion formation was established by comparison of the fast atom bombardment mass spectra of synthetic cyclophosphamide-mesna conjugates with various organic and inorganic counter ions. The ifosfamide-4-(2-thioethylsulphonate) (ifosfamide-mesna) conjugate was identified as a metabolite in the urine of rats, and in patients after administration of the combination, ifosfamide + mesna. By means of a two-step extraction and with the use of suitable analogues as internal standards, procedures for the quantification of parent oxazaphosphorine and of oxazaphosphorine-mesna conjugates by negative ion fast atom bombardment mass spectrometry have been developed, and first examples for the determination of excretion kinetics are described.  相似文献   

7.
The metabolism and urinary excretion of 1,2(n)-3H-1-dehydrotestosterone were studied in cross-bred gelded horses. Approximately 40% of the dose was excreted in 24 h. The steroid metabolites were extracted by Amberlite XAD-2 resin and fractionated into glucuronides and sulphoconjugates. Unchanged 1-dehydrotestosterone was the only component identified by gas chromatography mass spectrometry after solvolysis of the sulphoconjugates. Positive and negative ion fast atom bombardment mass spectra were obtained on the purified 1-dehydrotestosterone sulphoconjugate isolated from horse urine and on the alkali metal salts of three standard steroid conjugates. Spectra obtained in the different modes were of comparable intensity. Positive ion spectra were generally more complex due to the formation of alkali metal adduct ions containing several sodium cations. The most abundant ion in the negative ion spectra corresponded to the loss of the alkali metal cation to give [M]-. Thus, the structure of a conjugate can be defined from the combination of mass spectrometric techniques.  相似文献   

8.
A new method to determine the structure of lipoxygenase reaction products is presented. Thermospray mass spectra of hydroperoxy derivatives of polyunsaturates contain both molecular ion species and fragment reflecting the position of oxygenation. Data are presented for hydroperoxyl-docosahexaenoic, eicosapentaenoic, arachidonic and linoleic acids in this regard. Ten positional isomers of hydroperoxy docosahexaenoic acid were prepared by autooxidation and their structures were determined by thermospray LC/MS and confirmed by electron impact GC/MS after suitable derivatives were made. This technique was particularly useful in determining the structure of unknown metabolites by direct monitoring of the reaction mixture without derivation. In this paper, the value of this approach is demonstrated using a soybean lipoxygenase reaction mixture as a simple example.  相似文献   

9.
Fast atom bombardment (FAB) and tandem mass spectrometry (MS/MS) are shown to be useful methods for the detection and structural characterization of nanogram amounts of amino polyaromatic hydrocarbon-nucleoside DNA adducts. The positive ion spectra of four aromatic amine guanosine adducts were studied in detail. The FAB spectra of these adducts exhibit an [MH]+ ion and a more abundant aglycon fragment ion, [AH2]+, which results from the loss of the deoxyribose sugar. The sensitivity of the adducts to FAB was enhanced by preparing trimethylsilyl (TMS) ether derivatives. High-quality full-scan spectra could be obtained on less than 70 ng of the derivatized adducts without signal averaging. With a B/E-linked scan of the [MH]+ ion for the TMS2 species, these same adducts could be detected by examination of their metastable ion spectra at levels as low as 4-5 ng (S/N greater than 10). Collision-induced dissociation (CID) of the [MH]+ ion yields the aglycon fragment and an ion, S1, which results from cleavage through the sugar. The CID spectrum of the aglycon [AH2]+ ion is much more useful, providing structural information relating to the base, the polyaromatic hydrocarbon, and, possibly, the site of covalent attachment. Differentiation of isomeric aminophenanthrene-guanine adducts was demonstrated on the basis of the CID spectra of their respective [AH2]+ ions. The use of TMS derivatives also improves the sensitivity of these methods.  相似文献   

10.
Oxidative metabolites of the anticoagulant, warfarin [4-hydroxy-3-(3-oxo-1-phenylbutyl)-2H-1-benzopyran-2-one], produced by the actions of cytochromes P450 were analyzed by thermospray high-performance liquid chromatography/mass spectrometry. Warfarin, dehydrowarfarin, and the 6-, 7-, 8-, and 4'-hydroxy derivatives of warfarin were found to ionize well by the thermospray process in the presence of ammonium acetate. Thermospray mass spectra of these compounds were generally dominated by the protonated molecule, (M + H)+, and ions formed by the loss of water from the protonated molecule, (M + H - H2O)+. Fragment ions arising from the hydroxycoumarin, benzylhydroxycoumarin, and phenylbutanone portions of the molecules were observed, and the relative intensity of these fragment ions was greatly increased with filament ionization and application of a high repeller potential (100-130 V). Selected-ion monitoring of the (M + H)+ and (M + H - H2O)+ ions provided sensitivities for these compounds in the 2 to 10 ng range. A method employing thermospray HPLC/MS with selected-ion monitoring and internal standard quantitation for the analysis of the oxidative metabolites of warfarin is described.  相似文献   

11.
The negative ion mass spectrometric characteristics of a series of di- and trisaccharides and the tetrasaccharide stachyose have been studied using fast atom bombardment mass spectrometry. The molecular weight of the compounds can easily be derived from their mass spectra, which all show an abundant [M - H]- ion peak. The application of metastable ion and collisional activation techniques to selected pseudomolecular and fragment ions appears to be appropriate for the determination of the position and anomeric type of linkage in the molecules, and provides information concerning the monosaccharide units involved. Important fragmentation reactions have been traced and reaction mechanisms, supported by deuterium labelling experiments, are proposed. An experiment describing the application of the findings of this study to a glycosphingolipid molecule demonstrates its potential value for biological systems.  相似文献   

12.
Positive ion fast atom bombardment (FAB) mass spectrometry of galactopsychosine and glucopsychosine was capable of showing not only the pseudo molecular ion peaks, but also various fragment ion peaks such as protonated sphingosine and its fragment ions. The percent distribution of sphingosine and dihydrosphingosine in each lysosphingolipid was determined by GLC of the trimethyl-silylated derivatives of long chain bases after methanolysis and was comparable to the relative intensities of ion peaks derived from the sphingosine and dihydrosphingosine groups. The FAB mass spectra showed that during the fast atom bombardment the sphingosine more preferentially gave rise to one and/or two fragment ions by loss of one and/or two molecules of water than the dihydrosphingosine did. The stereoisomerism of sphingosylphosphorylcholine containing mainly L-threo-sphingosine could be reconfirmed by carbon-13 NMR spectroscopy. Furthermore, although the carbon-13 NMR signals of sphingosine C-1, C-2, C-3, C-4, and C-5 showed significant chemical shift differences between D-erythro and L-threo-sphingosines of lysosphingolipids, it was concluded that the signal position of sphingosine C-3 was the most important for the determination of D-erythro and L-threo configuration in the long chain base moieties of lysosphingolipids.  相似文献   

13.
The reaction of 1,2-dibromoethane and glutathione with DNA in the presence of glutathione S-transferase results in the formation of a single major DNA adduct, which can be released by thermal hydrolysis at neutral pH and separated by octadecylsilyl and propylamino high-performance liquid chromatography. The same DNA adduct is the only major one formed in livers of rats treated with 1,2-dibromo[1,2-14C]ethane. The DNA adduct was identified as S-[2-(N7-guanyl)ethyl]glutathione: (1) The chromatographic behavior was altered by treatment with gamma-glutamyl transpeptidase or Streptomyces griseus protease. (2) The molecular ions observed in positive and negative mode fast atom bombardment mass spectrometry were those expected for the structure when either glycerol or a mixture of dithiothreitol and dithioerythritol was used as the bombardment matrix. (3) The two-dimensional 1H NMR correlated spectroscopy spectrum of the DNA adduct was compared to the spectra of glutathione, oxidized glutathione, and N7-methylguanine and found to be consistent with the assigned structure. No evidence for in vitro or in vivo opening of the guanyl imidazole ring was observed under these conditions. The structure of the adduct supports a pathway involving enzyme-catalyzed conjugation of 1,2-dibromoethane with glutathione, non-enzymatic dehydrohalogenation of the resulting half-mustard to form a cyclic episulfonium ion, and attack of the N7 nitrogen of DNA guanine on the episulfonium ion to generate this major DNA adduct, which may be related to the carcinogenicity of this chemical.  相似文献   

14.
The application of thermospray and plasmaspray high-performance liquid chromatography—mass spectrometry to the analysis of diuretics and probenecid has been investigated. The latter method gave better ionization efficiency than the former, and its response was optimized by altering the solvent composition: best results were obtained with water—methanol—acetonitrile—trifluoroacetic acid. Using different proportions of these solvents, three isocratic systems were developed to separate the compounds under study. The principal characteristic of plasmaspray positive-ion mass spectra was a protonated molecular ion and very little fragmentation was evident. In the negative ionization mode, the plasmaspray method gave mass spectra showing more fragmentation, which resulted in additional structural information. The ability of trifluoroacetic acid to form negative cluster ions precluded its use as a mobile phase component. The minimum detectable amounts determined by the analysis in the positive-ion mode was compound-dependent, but generally ca. 10–150 ng. In many cases the compounds could be detected in urine extracts.  相似文献   

15.
In ion trap mass spectrometry, fragile ions may fragment under the application of resonance ejection during precursor mass isolation, reducing MS/MS spectral intensity. In this study the steroidal epimers testosterone glucuronide (TG) and epitestosterone glucuronide (EG) have been chosen as a model for exploring whether compound structure is linked to ion trap fragility. Both compounds form multiple adducts by ESI-MS, namely protonation, ammonium and sodium, however, the mass spectrum of EG displays a more intense ammonium adduct peak than TG. [TG + NH4]+, [EG + NH4]+ and [EG + H]+ were found to be fragile ions. To explain the differences in adduct formation and fragility, molecular modelling was employed. Ammonium adduction was localised to the glucuronide ring oxygens and while EG has eight possible adduction sites, only seven were located for TG explaining the increased ammonium adduct abundance with EG. In EG the bond between the steroid and the glucuronide was slightly longer and the oxygen in this bond was more basic than TG. This shows that the EG bond is weaker which may contribute to the fact that [EG + H]+ but not [TG + H]+ is fragile. To investigate whether stability could be restored by chemical means, EG was derivatised with tris(trimethoxyphenyl)phosphonium chloride or methylated on the carboxylic acid and Girard P or methoxylamine on the 3-keto group. Derivatisation of the steroid rather than the glucuronide eliminated fragility and using a charged derivative eliminated adduct formation. This work demonstrates the importance of carefully considering the nature of the derivative and the site of derivatisation.  相似文献   

16.
Atmospheric pressure chemical ionization liquid chromatography–mass spectrometry was used in the identification of triacylglycerol molecular species in lymph samples from rats given either a structured lipid or safflower oil. The structured lipid was MLM-type (M, medium-chain fatty acid; L, long-chain fatty acid) and manufactured from caprylic acid (8:0) and the oil (safflower oil or high-oleic sunflower oil). The triacylglycerol composition of lymph varied significantly between structured triacylglycerols and safflower oil. Diacylglycerol fragment ions were found for all triacylglycerols and we could also observe the ammonium adduct molecular ion [M+NH4]+ for all the triacylglycerols at the selected conditions. Protonated molecular ions were formed from triacylglycerols containing unsaturated fatty acids, and fatty acid fragment ions were also observed in the case of strong fragmentation. The lymph triacylglycerols were identified from their ammonium adduct molecular ions and diacylglycerol fragment ions. In addition to the intact MLM-type structured triacylglycerols, the MLL- and LLL-type triacylglycerols were also identified. The absorption pathway of MLM-type structured triacylglycerols is most likely the same as that of conventional long-chain triacylglycerols, i.e. they were hydrolyzed into 2-monoacylglycerol and medium-chain fatty acids, which were then used for resynthesis of triacylglycerols. The present study thereby also demonstrates the possibility to study the absorption pathway of triacylglycerol via identification of triacylglycerol species in biological samples.  相似文献   

17.
Fast atom bombardment (FAB) and collisional activation dissociation (CAD) mass-analysed ion kinetic energy (MIKE) spectra have confirmed the structures of retinyl phosphate (Ret-P), retinyl phosphate mannose (Ret-P-Man) and guanosine 5'-diphospho-D-mannose (GDP-Man). Ret-P-Man was made in vitro while Ret-P and GDP-Man were chemically synthesized. Positive ion FAB mass spectrometry of Ret-P showed an observable short-lived spectrum with a mass ion at m/z 367 [M + H]+, and a major fragment ion at m/z 269 [M + H - H3PO4]+. Negative ion FAB mass spectrometry of Ret-P showed a strong stable spectrum with a parent ion at m/z 365 [M - H]-, a glycerol (G) adduct ion at m/z 457 [M - H + G]- and a dimer ion at m/z 731 [2M - H]-. GDP-Man showed an intense spectrum with parent ion at m/z 604 [M - H]- and cationized species at m/z 626 [M + Na - 2H]- and 648 [M + 2Na - 3H]-. Negative ion FAB mass spectrometry of Ret-P-Man showed a parent ion at m/z 527 [M - H]- and a fragment ion at m/z 259 [C6H12PO9]-. The CAD-MIKE spectra showed structurally significant fragment ions at m/z 442 and 361 for the [M - H]- ion of GDP-Man, and at m/z 509, 406, 364 and 241 for the [M - H]- ion of Ret-P-Man. FAB and CAD-MIKE spectra have been applied successfully to confirm the structure of Ret-P-Man made in vitro from Ret-P and GDP-Man.  相似文献   

18.
H Y Kim  N Salem 《Prostaglandins》1989,37(1):105-119
A new method to determine the structure of lipoxygenase reaction products is presented. Thermospray mass spectra of hydroperoxy derivatives of polyunsaturates contain both molecular ion species and fragments reflecting the position of oxygenation. Data are presented for hydroperoxy-docosahexaenoic, eicosapentaenoic, arachidonic and linoleic acids in this regard. Ten positional isomers of hydroperoxy docosahexaenoic acid were prepared by autooxidation and their structures were determined by thermospray LC/MS and confirmed by electron impact GC/MS after suitable derivatives were made. This technique was particularly useful in determining the structure of unknown metabolites by direct monitoring of the reaction mixture without derivatization. In this paper, the value of this approach is demonstrated using a soybean lipoxygenase reaction mixture as a simple example.  相似文献   

19.
Abstract

The fast atom bombardment (FAB) mass spectra of the eight major nucleosides found in RNA and DNA, pseudouridine and 2′,3′-O-isopropylidene adenosine are described and compared to El, CI, and desorption chemical ionization (DCI) spectra reported in the literature or obtained in this laboratory. Bcty, cocltl nun FAB spectra are reported. The FAB spectra are simple and provide unambiguous molecular weight information along with structurally significant fragment ions. Mechanisms of ion formation are thought to closely parallel those suggested earlier to be operating in the CI mode. Advantages and disadvantages of FAB relative to the standard ionization modes are discussed.  相似文献   

20.
Applicability of negative ion fast atom bombardment (FAB)-tandem mass spectrometry (MS/MS) was examined in trace mixture analyses and structural assignments of some isoprenoid diphosphates. Negative ion FAB-MS spectra using a glycerol matrix of these isoprenoid diphosphates showed predominantly molecular ions (M-H)- together with fragment ions at m/z 177 (H3P2O7)-, 176 (H2P2O7)-, 159 (HP2O6)-, and 79 (PO3)- which were characteristic of the diphosphate ester moiety. The molecular ions did not overlap with peaks arising from any impurities even when crude sample such as butanol extracts from enzymatic reaction mixtures were directly analyzed without any purification. Moreover, collisionally activated dissociation spectra of the molecular ion showed many structurally significant fragment ions which enabled us to elucidate the structures of such irregular alkyl chain moieties as those having a homoisoprenoid skeleton or substituted structures. These studies indicate that negative ion FAB-MS/MS is a simple and useful technique for trace mixture analysis and structure elucidation of isoprenoid diphosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号