首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A medium that initially produced filaments from almost all of its Candida albicans blastospore inoculum contained 1% mycological peptone and 0.2% glucose, final pH 7.4-7.5. The medium was inoculated to 10-6 cells/ml and incubated at 40 degrees C. Reversion to secondary blastospores began at a mean of 2.4 h after inoculation. The patterns of utilization of growth nutrients during optimal mycelial growth showed no correlation with the events of filamentation.  相似文献   

2.
Chitin is an essential component of the cell wall of many fungi. Chitin also can be enzymatically deacetylated to chitosan, a more flexible and soluble polymer. Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningoencephalitis, particularly in immunocompromised patients. In this work, we show that both chitin and chitosan are present in the cell wall of vegetatively growing C. neoformans yeast cells and that the levels of both rise dramatically as cells grow to higher density in liquid culture. C. neoformans has eight putative chitin synthases, and strains with any one chitin synthase deleted are viable at 30 degrees C. In addition, C. neoformans genes encode three putative regulator proteins, which are homologs of Saccharomyces cerevisiae Skt5p. None of these three is essential for viability. However, one of the chitin synthases (Chs3) and one of the regulators (Csr2) are important for growth. Cells with deletions in either CHS3 or CSR2 have several shared phenotypes, including sensitivity to growth at 37 degrees C. The similarity of their phenotypes also suggests that Csr2 specifically regulates chitin synthesis by Chs3. Lastly, both chs3Delta and the csr2Delta mutants are defective in chitosan production, predicting that Chs3-Csr2 complex with chitin deacetylases for conversion of chitin to chitosan. These data suggest that chitin synthesis could be an excellent antifungal target.  相似文献   

3.
Growth of Saccharomyces cerevisiae cell cycle mutants cdc3, cdc4, cdc7, cdc24, and cdc28 at a nonpermissive temperature (37 degrees C) resulted in increased accumulation of chitin relative to other cell wall components, as compared with that observed at a permissive temperature (25 degrees C). Wild-type cells showed the same chitin/carbohydrate ratio at both temperatures, whereas mutants cdc13 and cdc21 yielded only a small increase in the ratio at 37 degrees C. These results confirm and extend those reported by B. F. Sloat and J. R. Pringle (Science 200:1171-1173, 1978) for mutant cdc24. The distribution of chitin in the cell wall was studied by electron microscopy, by specific staining with wheat germ agglutinin-colloidal gold complexes. At the permissive temperature, chitin was restricted to the septal region in all strains, whereas at 37 degrees C a generalized distribution of chitin in the cell wall was observed in all mutants. These results do not support a unique interdependence between the product of the cdc24 gene and localization of chitin deposition; they suggest that unbalanced conditions created in the cell by arresting the cycle at different stages result in generalized activation of the chitin synthetase zymogen. Thus, blockage of an event in the cell cycle may lead to consequences that are not functionally related to that event under normal conditions.  相似文献   

4.
Candida albicans cell wall components were analyzed by ethylenediamine (EDA) treatment. Based on their different solubility properties, the cell wall components produced three fractions (A, B, and C). Fractions B (EDA-soluble, water-insoluble) and C (EDA-insoluble) contained glucan, chitin, and protein in different proportions. After zymolyase (mainly a β-glucanase complex) or chitinase treatment of fractions B and C, more polysaccharides and proteins were solubilized by a second EDA treatment, suggesting that the solubility of the polymers in EDA depends on the degree of polymer interactions. Western blot analysis using two monoclonal antibodies (1B12 and 4C12) revealed electrophoretic patterns that were similar in mycelial and yeast morphologies, except that in material obtained from mycelial walls, an additional band was detected with MAb 1B12. Fluorescence microscopy of cell wall fractions treated with FITC-labeled Con-A, Calcofluor white, and FITC-labeled agglutinin showed that glucan and mannoproteins are uniformly distributed in fractions B and C, while chitin is restricted to distinct patches. Transmission electron microscopy demonstrated that fraction C maintained the original shape of the cells, with an irregular thickness generally wider than the walls. When fraction C was treated with chitinase, the morphology was still present and was maintained by an external glucan layer, with an internal expanded fibrillar material covering the entire cellular lumen. Degradation of the glucan skeleton of fraction C with zymolyase resulted in the loss of the morphology. Received: 1 April 1996 / Accepted: 2 September 1996  相似文献   

5.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

6.
In budding yeast, chitin is found in three locations: at the primary septum, largely in free form, at the mother-bud neck, partially linked to beta(1-3)glucan, and in the lateral wall, attached in part to beta(1-6)glucan. By using a recently developed strategy for the study of cell wall cross-links, we have found that chitin linked to beta(1-6)glucan is diminished in mutants of the CRH1 or the CRH2/UTR2 gene and completely absent in a double mutant. This indicates that Crh1p and Crh2p, homologues of glycosyltransferases, ferry chitin chains from chitin synthase III to beta(1-6)glucan. Deletion of CRH1 and/or CRH2 aggravated the defects of fks1Delta and gas1Delta mutants, which are impaired in cell wall synthesis. A temperature shift from 30 degrees C to 38 degrees C increased the proportion of chitin attached to beta(1-6)glucan. The expression of CRH1, but not that of CRH2, was also higher at 38 degrees C in a manner dependent on the cell integrity pathway. Furthermore, the localization of both Crh1p and Crh2p at the cell cortex, the area where the chitin-beta(1-6)glucan complex is found, was greatly enhanced at 38 degrees C. Crh1p and Crh2p are the first proteins directly implicated in the formation of cross-links between cell wall components in fungi.  相似文献   

7.
The cell wall of the yeast form of Histoplasma farciminosum contains 13.2% beta-1,3-glucan, 1.0% galactomannan, and 25.8% chitin, whereas the cell wall of mycelial form has 21.8, 4.5, and 40%, respectively, for the same polymers. Also, the cell wall of the yeast form contains alpha-1,3-glucan (13.5%) and an unidentified polymer (21.5%). Chitin, one of the structural polymers of both yeast and mycelial cell walls, is identified as thin isolated fibers (4 nm wide) or in thick bundles (50 nm wide) of fibers. beta-(1-3)-Glucan is also found as thin isolated fibers indistinguishable from isolated fibers of chitin. Fibers 14 nm wide and resembling alpha-(1-3)-glucan fibers of other fungi are found in the yeast form. The results reported here do not give support to the proposal for a different taxonomic classification.  相似文献   

8.
Monensin, a monovalent cation ionophore, was used to investigate some steps of the wall synthesis and morphogenesis in Candida albicans blastospores. In the presence of the drug, the pathogenic yeast developed enormous wall and septum thickenings that reacted intensely and specifically with wheat germ agglutinin and chitinase coupled to colloidal gold and fluorescein isothiocyanate. Therefore, the aberrant zones are interpreted as sites of chitin accumulation. The increased production of this homopolymer, also demonstrated by the chemical analysis of cell wall preparations, implies that monensin interferes in some way with the regulatory factors that normally control, in space and time, chitin synthetase activity.  相似文献   

9.
In Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans and Coprinus cinereus most of the alkali-insoluble (1 leads to 3)-beta-D/(1 leads to 6)-beta-D-glucan of the wall can be extracted with dimethyl sulphoxide. The same fraction, and in Saccharomyces cerevisiae a small additional fraction, can be extracted by a destructive procedure involving 40% NaOH at 100 degrees C. The small fraction of the glucan which resists this treatment becomes soluble after a subsequent treatment with HNO2 indicating that it is covalently linked to chitin in the wall. In contrast, in Schizophyllum commune and Agaricus bisporus, nearly all the (1 leads to 3)-beta-D/(1 leads to 6)-beta-D-glucan appears to be held insoluble by linkage to chitin.  相似文献   

10.
Two morphologically distinct forms of chitin were found in the arthrospore walls and septa of Trichophyton mentagrophytes. Two-thirds of the total wall chitin was the microfibrillar and chitinase-sensitive form. The remaining chitin existed in a previously uncharacterized "nonfibrillar" form and was insensitive to the action of Streptomyces chitinase. Exhaustive digestion of the arthrospore walls and septa with beta (1 leads to 3)-glucanase and chitinase followed by extraction with NaOH (1 N, 100 degrees C, 3 h) resulted in a fraction which retained the original wall shape. This fraction consisted of 85% N-acetylglucosamine, 2.0% galactosamine, 2.5% glucose, and 0.4% amino acids, 74% of which were lysine. Both its infrared spectrum and its X-ray diffraction pattern were almost identical to those of authentic chitin. There was no evidence of the presence of muramic acid, hexuronic acid, phosphate, or sulfate in this fraction. Its resistance to chitinase was due neither to the presence of protective wall layers or melanin nor to its close or covalent association with beta-glucan. Aside from its nonfibrillarity, this hexosamine polymer differed from authentic chitin in that it was soluble in 6 N HCl and 7.5 N NaOH. The development of this nonfibrillar chitin layer in the cell wall during arthrosporogenesis of T. mentagrophytes may be related to the arthrospores being resistant to a variety of antifungal agents.  相似文献   

11.
Protoplasts of Pyricularia oryzae P2 formed a cell wall and eventually reverted to a normal mycelial form in liquid medium. The process of the formation of two main cell-wall components, glucan and chitin, was studied from the onset of regeneration. Analyses using radioactive sugars suggested that chitin synthesis started after a short lag but glucan formation was delayed. Chemical analysis of regenerating cell walls using gas-liquid chromatography indicated clearly that chitin formation precedes glucan formation.  相似文献   

12.
An attempt was made to isolate and identify Streptococcus faecalis products responsible for the inhibition of mycelial transformation of Candida albicans. Five of streptococcal strains which 48 h broth culture supernatants run at 37 degrees C inhibited the most transformation of Candida albicans from yeast phase to mycelial phage. The strains were cultivated for 48 h in Tryptic Soy Broth at 37 degrees C, centrifuged and culture supernatants sterilised by means of filtration on millipore membranes of 0.4 micron diameter. After multistep purification of supernatants filtration on Diaflo PM 10 ultrafiltration membranes, Sephadex G 25, polyacrylamide gel electrophoresis) a homogenous, active fraction was obtained containing peptides of molecular weight around 6,000 Da. The peptides lost ability to induce mycelial transformation of C. albicans after heating at 100 degrees C for 10 min. Significant inhibition of morphological transformation of fungal cells was seen at the preparation concentration of 0.12 microgram/ml.  相似文献   

13.
提高虫生真菌孢子应对热胁迫的能力是生防菌应用研究的关键,为研究菌丝培养阶段碳源对玫烟色虫草Cordyceps fumosorosea IF-1106耐热性的影响,选择了麦芽糖、可溶性淀粉、蔗糖、葡萄糖、果糖、海藻糖为碳源的培养基对玫烟色虫草IF-1106进行液体培养,评估了不同碳源条件下菌丝的生长、产孢及所产芽生孢子的耐热性。结果表明,在菌株培养阶段,培养基中碳源的种类及浓度对菌丝产量、产孢量及所产芽生孢子的耐热性有显著影响,其中蔗糖为碳源时,所产芽生孢子的耐热性强,45 ℃热胁迫条件下LT50为1.65 h;蔗糖浓度为40 g/L时,可产生大量耐热芽生孢子,液体培养3 d后产孢量可达3.43×107个孢子/mL。为探索不同培养条件下所产芽生孢子耐热性不同的原因,提取了孢子内的海藻糖并采用离子色谱法对其进行了定量分析,发现耐热性高的芽生孢子胞内海藻糖含量普遍较低,可见海藻糖是与芽生孢子耐热性密切相关的内源物质。综上所述,选择适宜的培养基是调控孢子耐热性的有效途径,本研究为生产高耐热的玫烟色虫草生防制剂提供了有益的指导。  相似文献   

14.
Ren YY  West CA 《Plant physiology》1992,99(3):1169-1178
Cell-free extracts of UV-irradiated rice (Oryza sativa L.) leaves have a much greater capacity for the synthesis from geranylgeranyl pyrophosphate of diterpene hydrocarbons, including the putative precursors of rice phytoalexins, than extracts of unstressed leaves (KA Wickham, CA West [1992] Arch Biochem Biophys 293: 320-332). An elicitor bioassay was developed on the basis of these observations in which 6-day-old rice cell suspension cultures were incubated for 40 hours with the substance to be tested, and an enzyme extract of the treated cells was assayed for its diterpene hydrocarbon synthesis activity as a measure of the response to elicitor. Four types of cell wall polysaccharides and oligosaccharide fragments that have elicitor activity for other plants were tested. Of these, polymeric chitin was the most active; a suspension concentration of approximately 7 micrograms per milliliter gave 50% of the maximum response in the bioassay. Chitosan and a branched β-1,3-glucan fraction from Phytophthora megasperma f. sp. glycinea cell walls were only weakly active, and a mixture of oligogalacturonides was only slightly active. A crude mycelial cell wall preparation from the rice pathogen, Fusarium moniliforme, gave a response comparable to that of chitin, and this activity was sensitive to predigestion of the cell wall material with chitinase before the elicitor assay. N-Acetylglucosamine, chitobiose, chitotriose, and chitotetrose were inactive as elicitors, whereas a mixture of chitin fragments solubilized from insoluble chitin by partial acid hydrolysis was highly active. Constitutive chitinase activity was detected in the culture filtrate and enzyme extract of cells from a 6-day-old rice cell culture; the amount of chitinase activity increased markedly in both the culture filtrate and cell extracts after treatment of the culture with chitin. We propose on the basis of these results that soluble chitin fragments released from fungal cell walls through the action of constitutive rice chitinases serve as biotic elicitors of defense-related responses in rice.  相似文献   

15.
Swm1p, a subunit of the APC cyclosome, was originally identified for its role in the later stages of the sporulation process and is required for spore wall assembly. In addition, this protein is required to maintain cell wall integrity in vegetative cells during growth at high temperature. Electron microscopy analyses of mutant cells grown at the restrictive temperature in the absence of osmotic support show that the cell wall is clearly abnormal, with large number of discontinuities that may be responsible for the observed lysis. The mutant cells show a 7-fold reduction in glucan synthase activity during growth at 38 degrees C and a 3.5-fold increase in the chitin content of the cell wall. The chitin is deposited in a delocalized manner all over the cell wall, where it accumulates in patches in abnormal regions. The excess chitin is mainly synthesized by the action of chitin synthase III (Chs3p), since it disappears in the swm1 chs3 double-mutant.  相似文献   

16.
The filamentous growth cycle in C. albicans was resistant to changes in environment brought about either by the serial transfer of growing cells to fresh nutrients or by sudden changes of temperature after the first h of growth. In further experiments older culture filtrates, exhausted of their ability to induce mycelial growth, were reactivated by addition of fresh nutrients or water. The data provided evidence against the existence of both a mycelial stimulatory and inhibitory compound in the growth medium. It is concluded that although the environment initially dictates what proportion of blastospores are committed to filamentation it has no further effect on the process.  相似文献   

17.
Chitin synthase (ED 2.4.1.16) has been characterized in Aspergillus flavus. A K(m) value of 2.5 m(M) was obtained for the substrate UDPGlcNAc. The enzyme had a requirement for GlcNAc, and Mg2+ and activity was increased in the presence of soluble chitodextrins F1 and F2. The optimum activity was obtained using Tris--HCl buffer, pH 7.5, with a secondary peak at pH 6.2 and an incubation temperature of 29.5 degrees C. Distribution patterns of chitin synthase in protoplasts and mycelial material were very similar. The highest specific activity was found in a 200 000 X g fraction. Enzyme levels in growing mycelium increased during the exponential growth phase after which they declined. Activity also increased during the early stages of regeneration of both conidial and mycelial protoplasts, despite an initial lack in net protein synthesis. Chitin synthase levels were also dependent upon the carbon source available during regeneration.  相似文献   

18.
Temperature-sensitive yeast mutants defective in gene CDC24 continued to grow (i.e., increase in cell mass and cell volume) at restrictive temperature (36 degrees C) but were unable to form buds. Staining with the fluorescent dye Calcofluor showed that the mutants were also unable to form normal bud scars (the discrete chitin rings formed in the cell wall at budding sites) at 36 degrees C; instead, large amounts of chitin were deposited randomly over the surfaces of the growing unbudded cells. Labeling of cell-wall mannan with fluorescein isothiocyanate-conjugated concanavalin A suggested that mannan incorporation was also delocalized in mutant cells grown at 36 degrees C. Although the mutants have well-defined execution points just before bud emergence, inactivation of the CDC24 gene product in budded cells led both to selective growth of mother cells rather than of buds and to delocalized chitin deposition, indicating that the CDC24 gene product functions in the normal localization of growth in budded as well as in unbudded cells. Growth of the mutant strains at temperatures less than 36 degrees C revealed allele-specific differences in behavior. Two strains produced buds of abnormal shape during growth at 33 degrees C. Moreover, these same strains displayed abnormal localization of budding sites when growth at 24 degrees C (the normal permissive temperature for the mutants); in each case, the abnormal pattern of budding sites segregated with the temperature sensitivity in crosses. Thus, the CDC24 gene product seems to be involved in selection of the budding site, formation of the chitin ring at that site, the subsequent localization of new cell wall growth to the budding site and the growing bud, and the balance between tip growth and uniform growth of the bud that leads to the normal cell shape.  相似文献   

19.
Studies on the blastospore production of Metarhizium anisopliae var. anisopliae were conducted in Adamek's medium used as a standard, enriched with lecithin, collagen, lactic acid or polyethylene glycol 200 (PEG 200) to increase spore yield and suppress mycelial pellet formation. The addition of 5% lecithin resulted in a significant 10-fold increase in spore yield up to 1.9 108 blastospores/ml compared with 1.9 107 spores/ml in the standard medium. Collagen (3%) increased the number of blastospores 3.7-fold, and lactic acid (1.5%) two-fold. A reduction of mycelial pellet formation in favour of spore production was noted with each additive. The viability of blastospores at 40IC from media with lecithin, collagen and lactic acid suspended in 25% Ringer's solution was comparable to that of spores produced in the standard medium. Striking differences were noticed in the viability of spores produced with 5% PEG 200 in standard medium. The half-life of blastospores produced in standard medium suspended in sunflower oil was 33.6 h and that of 5% PEG 200 spores only 25.2 h. In bioassays, the virulence of spores produced in standard medium to which 3% lecithin, 3% collagen, 1.5% lactic acid or 5% PEG 200 had been added was tested against third-instar nymphs of Locusta migratoria migratorioides (R. & F.). The median lethal time and the mortality of L. migratoria achieved with blastospores produced with 3% lecithin (5.7 days, 99%) was comparable to that of blastospores from standard medium (5.1 days, 98%). The virulence of blastospores from all other media with additives was significantly reduced.  相似文献   

20.
Chitin, after cellulose, is the second most abundant natural polymer. With a 200-year history of scientific research, chitin is beginning to see fruitful application in the fields of stem cell and tissue engineering. To date, however, research in chitin as a biomaterial appears to lag far behind that of its close relative, chitosan, due to the perceived difficulty in processing chitin. This review presents methods to improve the processability of chitin, and goes on further to discuss the unique physicochemical and biological characteristics of chitin that favor it as a biomaterial for regenerative medicine applications. Examples of the latter are presented, with special attention on the qualities of chitin that make it inherently suitable as scaffolds and matrices for tissue engineering, stem cell propagation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号