首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bud viability after various defoliation frequency treatments was determined in the perennial bunchgrass Poa ligularis under arid field conditions from 2002 to 2005. Bud respiratory activity was examined on various stem base hierarchies using the tetrazolium test, as validated with the vital stain Evan’s blue. The hypothesis of this work was that the total and viable axillary bud numbers on stem bases of all study stem base hierarchies are reduced as defoliation frequency increases. Interpretation of the results differed when they were expressed as a percentage rather than on a number per stem base basis. The total number of axillary buds per stem base was similar in all defoliation frequencies. When the results were expressed on a percentage basis, the order on stem bases having metabolically active buds was daughter tillers > stem bases with green tillers > stem bases without green tillers in all defoliation frequencies. The reverse order was found when considering dead buds. How the results are expressed thus deserves our attention when reporting results on bud viability in perennial grasses. An increased defoliation frequency increased the percentage of dead and dormant buds after the third or fourth defoliation of P. ligularis during the 1st study year. These percentages of bud viability, however, increased after the first defoliation during the 2nd study year. Bud viability was affected not only by the cumulative effects of defoliation but also by climatic variables throughout the seasons. However, our results show that P. ligularis can be defoliated up to twice a year without affecting bud viability, and thus its potential capacity for regrowth after defoliation.  相似文献   

2.
Experiments with five caespitose grass species from temperateand tropical environments showed that the number of lateralshoots (tillers) which emerged following defoliation was notincreased by leaving a greater residual leaf area. Increasedavailability of photosynthate (and perhaps other resources)was effective, however, in increasing the rate of growth anddegree of flowering of new lateral shoots in one tropical species,Panicum maximum. In two temperate Agropyron tussock grasses, decapitation (apicalbud removal) did not stimulate lateral shoot growth. This indicatedthat apical dominance was not a factor preventing growth oflateral buds just prior to inflorescence emergence on the parenttillers. However, defoliation, where both terminal buds andfoliage were removed from the parent tillers stimulated lateralbud growth. Hormones other than those produced by the apicalbud or light quality or intensity may control lateral bud growthin these species. In contrast to the temperate species, lateralbud growth was stimulated by both decapitation and defoliationin the three tropical species. This response is consistent withthe model of correlative inhibition by apical dominance. Agropyron desertorum, Agropyron spicatum, Heteropogon contortus, Panicum maximum, Themeda triandra, crested wheatgrass, bluebunch wheatgrass, black speargrass, green panic grass kangaroo grass, apical dominance, tillering, regrowth, grazing, tussock grasses  相似文献   

3.
The caespitose grasses Agropyron spicatum and Agropyron desertorumexhibit a striking difference in tillering response followingexperimental clipping treatment, with plants of A. desertorumproducing up to 18 times more tillers. The two species are similarin many aspects of their phenology and physiology. Previousexamination of current photosynthate production and levels ofstored carbohydrates indicate only slight differences betweenthe species. The possible role of three anatomical/morphologicalconstraints in controlling tillering was examined. No evidencefor such constraints was found. A basal cluster of buds is presenton the parent tillers. The mean bud number per tiller was similarfor both species and the range (3–9) was identical. Nearlyall of the bud apical meristems appeared anatomically viablethroughout the growing season and vascular development occurredto within 250 to 490 µm of the various bud apices of bothspecies. Both normal fall tillers and summer tillers producedunder clipping treatment originated from the largest, most distalbuds of the basal cluster of buds. However, precocious, morphologicallydistinctive, second-order tillers occasionally grew out fromthe smaller, most basal buds of some elongating fall tillers. Agropyron spicatum, Agropyron desertorum, bluebunch wheatgrass, crested wheatgrass, bud, tiller, tillering ability, meristematic potential, vascular development, regrowth  相似文献   

4.
This glasshouse experiment was performed to assess the effectsof a range of constant defoliation regimes applied to cuttingsof a single large-leaved genotype ofTrifolium repens L. on theviability of its axillary buds. Plants were established to comprisea single main stolon (axillary branches were removed) and defoliationtreatments were applied by removing the older (basal) leavesuntil leaf complements of 1·0, 1·5, 2·0,2·5, 3·0 or all leaves (control) remained. Basalleaves were subsequently removed as necessary to maintain thetarget leaf complements. Only severe defoliation (leaf complements of 1·0 and1·5) induced a loss of viability in axillary buds. Lossof viability was greatest in reproductive buds present withinthe apical bud when the treatments were first imposed. Althoughthe most severe treatment (leaf complement 1·0) resultedin death of half the plants, in plants surviving that treatment,death of vegetative axillary buds was restricted to 21% of thevegetative buds at the three youngest node positions withinthe apical bud at the time of treatment application. No othertreatment induced any loss of viability of vegetative buds.There was no loss of viability of axillary buds at nodes formedafter the treatments were imposed. The frequency of initiationof inflorescences at nodes formed after treatments were imposeddecreased as defoliation severity increased. Severe defoliation resulted in marked changes in plant morphologyindicative of a sharp decrease in availability of intraplantresources. It was concluded that under severe defoliation: (1)the potential for vegetative growth (as represented by viablevegetative axillary buds) was maintained at the expense of reproductivegrowth; and (2) that the loss of viability of axillary budswas associated with the sudden changes in physiological processesinduced by defoliation as there was no loss of viability inbuds formed after plants had adjusted their phenotype to oneof smaller size. Trifolium repens L.; white clover; defoliation; axillary buds; viability; inflorescences  相似文献   

5.
The development of an axillary bud of white clover to form abranch depends on (1) the bud being viable, vegetative and non-dormant,and (2) suitable conditions for outgrowth of the bud. Foragingtheory emphasises the second of these requirements. Glasshousestudies with white clover rarely result in a loss of bud viability.In contrast, in field populations over 50% of the buds reachingthe stage of maturity when branching can occur are not in aviable, vegetative, non-dormant condition. We examined whethernon-viability could be induced in a glasshouse experiment byapplying treatments in a factorial design. The factors were:defoliation, phosphorus supply, soil moisture status, simulatedtreading and grass competition. In addition, we measured theeffects of the treatments on the outgrowth of viable buds inorder to assess whether the same factors were determining viabilityand outgrowth. Defoliation significantly reduced bud viability(by 44%) but no other factors, either singly or in combination,had a significant effect. A greater variety of factors and combinationsof factors influenced bud outgrowth; these were defoliation,phosphorus status and interactions involving phosphorus andgrass; defoliation, phosphorus and soil moisture; and soil moisture,grass and treading. For white clover it is relevant to includethe state of the axillary meristem in any model of foraging. Trifolium repens ; white clover; axillary bud; viability; clonal growth; foraging; defoliation  相似文献   

6.
The occurrence, longevity, and contribution of axillary bud banks to population maintenance were investigated in a late-seral perennial grass, Bouteloua curtipendula, and a mid-seral perennial grass, Hilaria belangeri, in a semiarid oak-juniper savanna. Axillary buds of both species were evaluated over a 2-year period in communities with contrasting histories of grazing by domestic herbivores. A double staining procedure utilizing triphenyl tetrazolium chloride and Evan's blue indicated that both viable and dormant axillary buds remained attached to the base of reproductive parental tillers for 18–24 months which exceeded parental tiller longevity by approximately 12 months. Bud longevity of the late-seral species, B. curtipendula, exceeded bud longevity of the mid-seral species, H. belangeri, by approximately 6 months. Younger buds located on the distal portion of the tiller base were 3.2 and 1.4 times more likely to grow out than older proximal buds of B. curtipendula and H. belangeri, respectively. The percentage of older proximal buds, which included comparable portions of viable and dormant buds, that grew out to produce tillers following mortality of parental tillers was 6.0% for B. curtipendula and 8.4% for H. belangeri. In spite of the occurrence of relative large axillary bud banks for both species, the magnitude of proximal bud growth did not appear sufficient to maintain viable tiller populations. We found no evidence to support the hypothesis of compensatory bud growth on an individual tiller basis for either species. Grazing history of the communities from which the buds were collected did not substantially affect the number, status, longevity, or outgrowth of axillary buds on an individual tiller basis for either species. However, long-term grazing by domestic herbivores influenced axillary bud availability by modifying population structure of these two species. Bud number per square meter for B. curtipendula was 25% lower in the long-term grazed compared to the long-term ungrazed community based on a reduction in both tiller number per plant and plant number per square meter. In contrast, bud number per square meter for H. belangeri was 190% greater in the long-term grazed than in the long-term ungrazed community based on a large increase in plant density per square meter. Minimal contributions of axillary bud banks to annual maintenance of tiller populations in this mid- and late-seral species underscores the ecological importance of consistent tiller recruitment from recently developed axillary buds. Consistent tiller recruitment in grasslands and savannas characterized by intensive grazing and periodic drought implies that (1) bud differentiation and maturation must be remarkably tolerant of adverse environmental conditions and/or (2) tiller recruitment may resume from buds that mature following the cessation of severe drought and/or grazing, rather than from mature buds that survive these disturbances. These scenarios warrant additional research emphasis given the critical importance of this demographic process to tiller replacement in species populations and the maintenance of relative species abundance in grasslands and savannas. Received: 12 August 1996 / Accepted: 30 December 1996  相似文献   

7.
The effect of assimilate supply on axillary bud developmentand subsequent shoot growth was investigated in roses. Differencesin assimilate supply were imposed by differential defoliation.Fresh and dry mass of axillary buds increased with increasedassimilate supply. The growth potential of buds was studiedeither by pruning the parent shoot above the bud, by graftingthe bud or by culturing the bud in vitro. Time until bud breakwas not clearly affected by assimilate supply during bud development,Increase in assimilate supply slightly increased the numberof leaves and leaf primordia in the bud; the number of leavespreceding the flower on the shoot grown from the axillary budsubstantially increased. No difference was found in the numberof leaves preceding the flower on shoots grown from buds attachedto the parent shoot and those from buds grafted on a cutting,indicating that at the moment of release from inhibition thebud meristem became determined to produce a specific numberof leaves and to develop into a flower. Assimilate supply duringaxillary bud development increased the number of pith cells,but the final size of the pith in the subsequent shoot was largelydetermined by cell enlargement, which was dependent on assimilatesupply during shoot growth. Shoot growth after release frominhibition was affected by assimilate supply during axillarybud development only when buds sprouted attached to the parentshoot, indicating that shoot growth is, to a major extent, dependenton the assimilate supply available while growth is taking place.Copyright1994, 1999 Academic Press Assimilate supply, axillary bud, cell number, cell size, defoliation, development, growth potential, meristem programming, pith, Rosa hybrida, rose, shoot growth  相似文献   

8.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

9.
Numbers of total, metabolically active, dormant or dead axillarybuds, and growth characteristics were determined before andafter controlled burnings in Stipa tenuis Phil., a native foragegrass of the Caldén District in central Argentina. One-hectareplots were burned on 25 Mar. (Burn 1) or 4 Apr. 1991 (Burn 2),or remained unburned (control). Bud metabolic activity was examinedusing the tetrazolium test and the vital stain Evans' blue. Before fire, more than 83% of the axillary buds on previous-seasonstems of S. tenuis were metabolically active in all treatments.After fire, previous-season stems that produced tiller in thecontrol and Burn 2 plots had more than 75% of the axillary budsalive, but those that did not produce them had more than 82%of their axillary buds dead in the burned areas. This high budmortality was associated with direct fire effects on the fateof buds; most dead buds showed visible signs of dehydration.Since more than 97% of the plant stem bases did not producetillers after fire, tiller number per plant was reduced (P <0·05) in the burned plots to fewer than 22% of valuesof controls. Plant mortality was 50% higher at the Burn 1 thanat the Burn 2 site probably because the first site had a 43%lower soil moisture content (P < 0·05). At the endof the growing season, however, a different set of S. tenuisplants at both burned sites had a similar tiller number anddry weight to controls. These plants were probably in areasof lighter fuel loads and exposed to a less intense fire.Copyright1993, 1999 Academic Press Stipa tenuis Phil., thin needlegrass, controlled burning, bud viability, axillary meristems, regrowth  相似文献   

10.
BOKHARI  U. G. 《Annals of botany》1976,40(5):969-979
The influence of various treatments and temperature regimeson total chlorophylls and on the chlorophyll a:b ratio of westernwheatgrass and blue grama plants was investigated at differenttime intervals during the 120-day growth period. Western wheatgrass,a C3 species, accumulated greater amounts of chlorophyll thandid blue grama plants, a C4 species. Maximum concentrations(mg gd wt–1) of chlorophylls in western wheatgrass andin blue grama were recorded at the lower (13/7°C) and higher(30/18°C) temperature regimes. Nitrogen fertilizer alonedecreased the chlorophyll content in both species. The chlorophylla:b ratio in blue grama ranged from an average of 2·00under irrigated plus fertilized conditions to 3·00 undercontrol and fertilized conditions. On the other hand, the chlorophylla:b ratio in western wheatgrass remained constant at 3·00throughout the growing season under various treatments and temperatureregimes.  相似文献   

11.
Summary Branch growth and leaf formation from terminal and from lateral buds of red maple (Acer rubrum L.) and red oak (Quercus rubra L.) were measured in response to simulated insect defoliation. A single large branch representative of the crown of each tree was used for enumeration of growth and of bud numbers throughout three successive years of 0, 50, 75, and 100% leaf removal for the entire tree. Leaf number per tree for both species after the last year of defoliation was reduced in direct proportion to the severity of defoliation, in comparison to the predefoliation status of the trees. Bud number per tree for red maple, but not for red oak, was also reduced in proportion to severity of defoliation.Averaged over all defoliation treatments, defoliation reduced branch growth more than leaf production. Furthermore, the reduction in branch growth and leaf production was greater in red oak than in red maple. Three years of successive defoliation reduced the mean lateral plus terminal branch growth by 40% in red oak and by 23% in red maple, while leaf number was reduced 22% in red oak and remained unchanged in red maple. In red maple, 100% defoliation caused greater branch death than the 50 or 75% defoliation treatments, and the amount of death was greater after each successive year of defoliation. In contrast to red maple, undefoliated red oak incurred a substantial amount of branch death throughout the study which was little affected by defoliation treatment.  相似文献   

12.
The status of water in soil and vegetation was monitored in a stand of crested wheatgrass (Agropyron cristatum) and a nearby shortgrass steppe during a growing season. This was done to determine if water use and losses were similar among two very different communities in a similar climate. Precipitation was similar throughout the study period for both the crested wheatgrass and native shortgrass communities. However, the native shortgrass community with greater root biomass had consistently greater soil water depletion in the deeper soil horizons than was found in the crested wheatgrass community. Greater depletion of soil water by native shortgrass species suggests that they might be more competitive than crested wheatgrass in a water-limited environment.Crested wheatgrass maintained high leaf water potential early in the season, but lower water potential during the latter part of the growing season as compared with the major species of the shortgrass steppe, blue grama (Bouteloua gracilis) and western wheatgrass (Agropyron smithii). Leaf conductance was lower for crested wheatgrass than for the native grasses during the later part of the growing season. Consequently, seasonal transpiration for crested wheatgrass was lower when compared with blue grama or western wheatgrass. Lower conductance allowed crested wheatgrass to maintain relatively high internal water potential and may have accounted for less soil water use at deeper soil depths during the latter part of the growing season.Water loss through transpiration was less for western wheatgrass than for either blue grama or crested wheatgrass because western wheatgrass had less leaf area. However, western wheatgrass was as efficient as the other species in its use of water. Crested wheatgrass transpired more water than blue grama early in the growing season, but less than either native species for the remainder of the growing season. Estimated seasonal transpiration loss was greater in the shortgrass ecosystem than in the established crested wheatgrass stand.  相似文献   

13.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

14.
Non‐native crested wheatgrasses (Agropyron cristatum and A. desertorum) were used historically within the Great Basin for the purpose of competing with weed species and increasing livestock forage. These species continue to be used in some areas, especially after wildfires occurring in low elevation/precipitation, formerly Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis)/herbaceous communities. Seeding native species in these sites is often unsuccessful, and lack of establishment results in invasion and site dominance by exotic annuals. However, crested wheatgrass often forms dense monocultures that interfere competitively with the establishment of desirable native vegetation and do not provide the plant structure and habitat diversity for wildlife species equivalent to native‐dominated sagebrush plant communities. During a 5‐year study, we conducted trials to evaluate chemical and mechanical methods for reducing crested wheatgrass and the effectiveness of seeding native species into these sites after crested wheatgrass suppression. We determined that discing treatments were ineffective in reducing crested wheatgrass cover and even increased crested wheatgrass density in some cases. Glyphosate treatments initially reduced crested wheatgrass cover, but weeds increased in many treated plots and seeded species diminished over time as crested wheatgrass recovered. We concluded that, although increases in native species could possibly be obtained by repeating crested wheatgrass control treatments, reducing crested wheatgrass opens a window for invasion by exotic weed species.  相似文献   

15.
Common ash seedlings, grown in controlled conditions, were completelydefoliated 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 d afterthe completion of stem elongation. Complete defoliation up to80 d after the completion of stem elongation caused renewedgrowth of terminal buds. The buds had changed from a reversiblestate to an irreversible state by 80 d after the cessation ofstem elongation, as shown by the lack of response to defoliation.When leaves were removed before the cessation of stem elongation,rather than after, a similar enhancement of stem growth wasobserved. Partial defoliation experiments indicated that thedegree and location of defoliation play important roles in theplant response. Complete defoliation or complete removal ofleaflets was necessary to obtain 100% budburst. Apical dominancewas altered by partial defoliation treatments such that thebasal axillary buds began to grow out. Partial defoliation,especially before the cessation of stem elongation, was prejudicialto stem elongation. These results suggest that the inductionof compensatory growth mechanisms in ash seedlings require athreshold level of defoliation. Copyright 2000 Annals of BotanyCompany Fraxinus excelsior L., common ash, defoliation, growth, paradormancy  相似文献   

16.
In experiments under controlled growth conditions it was examined how flooding affected the responses of the invasive plant Alternanthera philoxeroides to defoliation. In drained and flooded conditions, plants were subjected to five defoliation levels: 0, 10, 50, 90% removal of leaf tissue and apex removal (90% leaf tissue plus apical bud removal). Plants were harvested weekly for five weeks. In drained conditions, plant biomasses including total biomass, shoot biomass and root biomass after 50% defoliation rapidly recovered to the control plant level. They were significantly lower for the 90% defoliation and apex removal treatments compared to control plants throughout the experiment. In flooded conditions, total biomass and shoot biomass after 50% defoliation, 90% defoliation, and apex removal treatments could return to control plant levels before the end of the experiment. In 90% defoliation and apex removal treatments root to shoot biomass ratios of both drained and flooded plants were initially much higher than in control plants, but the difference disappeared rapidly. The final biomasses decreased with increased defoliation intensity in drained conditions, but no significant difference was generally found in any of the defoliation treatments in flooded conditions. The rapid re-growth of A. philoxeroides plants after defoliation may partly be responsible for its invasion success. However, defoliation capable of removing 90% of the leaf tissue may be desirable in restricting the growth of this invasive species in drained conditions.  相似文献   

17.
Evidence is presented to show that in leaf squares of Peperomiasandersii bud initiation does not occur independently of rooting.Buds were formed close to the point of origin of roots and,in treatments where rooting was delayed, budding was affectedsimilarly. Promotion of root formation by pretreatment of squareswith 3-indolylbutyric acid was accompanied by increases in thenumber of buds initiated. Kinetin and N6-benzyladenine whichinhibited the initiation of roots also inhibited the initiationof buds. This was in contrast to the effect of these two compoundson leaf squares of Begonia rex where rooting was similarly inhibitedbut bud initiation was markedly promoted. When leaf squaresof Peperomia were grown in contact with relatively high concentrationsof kinetin buds were occasionally formed in the absence of roots.Removal of roots from leaf squares of Peperomia by excisionprevented the formation of buds.  相似文献   

18.
The effect of floral-bud removal at different stages of developmenton the plant height and on the total number of buds of Petuniawas studied. Continuous removal of all the floral buds 2 d beforeanthesis caused a marked decrease in plant height and also increasedthe total number of floral buds formed thereafter. At otherstages of floral bud development, bud removal had a lesser effecton both phenomena. Moreover, the plants did not respond to budremoval at anthesis. GA3 at 25 ppm applied to plants from which the buds had beenremoved, promoted stem elongation. The most pronounced effectwas on plants from which the buds were removed 2 d before anthesis,but it had no effect on plants from which the buds were removedat anthesis stage. The possible involvement of endogenous growth hormones in theresponse of Petunia plants to floral-bud removal and to applicationof GA3 is discussed. Bud removal, bud number, dwarfness, GA3, Petunia, plant height  相似文献   

19.
Cryopreservation of temperate woody-plant material by dormant buds is less expensive than using shoot tips isolated from tissue cultured plants; however currently, dormant buds are used only for preservation of selected temperate tree and shrub species. Using dormant buds could be an efficient strategy for long-term preservation of blueberry (Vaccinium L.) genetic resources. In this study, viability of V. hybrid ‘Northsky’ (PI 554943) dormant buds was evaluated at 30 harvest dates over three consecutive fall/winter seasons to determine the optimal harvest time that promotes high post cryopreservation viability. Twigs with dormant buds were cut into 70 mm segments containing at least two nodes, desiccated, slowly cooled, stored in liquid nitrogen vapor and tested for post-cryopreservation regrowth. The highest regrowth of cryopreserved dormant buds was observed for buds harvested in mid-December and during the first half of January. Pearson's correlation coefficients were computed to evaluate the association between bud characteristics and viability at harvest date and logistic regression models were fit to test the ability of twig characteristics and temperatures to predict post cryopreservation bud viability. Post-cryopreservation viability was negatively correlated (p < 0.05) with average minimum, maximum and daily mean temperature preceding the bud harvest but was not correlated with the dormant bud initial and end moisture content, twig diameter, the number of dormant buds/cm of twig length and the number of days in desiccation. Regression tree analysis suggested post-cryopreservation viability to be between 52 and 80% for dormant buds harvested after a 10 day average maximum air temperature of <11.2 °C. Pre-harvest air temperature was a significant indicator of optimal dormant bud harvest time to produce adequate viability for long term preservation of blueberry genetic resources.  相似文献   

20.
The length and basal diameter of all lateral and terminal budsof vegetative annual shoots of 7-year-oldJuglans regia treeswere measured. All buds were dissected and numbers of cataphylls,embryonic leaves and leaf primordia were recorded. Each axillarybud was ranked according to the position of its associated leaffrom the apex to the base of its parent shoot. Bud size andcontent were analysed in relation to bud position and were comparedwith the size and number of leaves of shoots in equivalent positionswhich extended during the following growing season. Length andbasal diameter of axillary buds varied according to their positionon the parent shoot. Terminal buds contained more embryonicleaves than any axillary bud. The number of leaves was smallerfor apical and basal axillary buds than for buds in intermediatepositions on the parent shoot only. All new extended shootswere entirely preformed in the buds that gave rise to them.Lateral shoots were formed in the median part of the parentshoot. These lateral shoots derived from buds which were largerthan both apical and basal ones. Copyright 2001 Annals of BotanyCompany Juglans regia L., Persian walnut tree, branching pattern, preformation, bud content, shoot morphology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号