共查询到10条相似文献,搜索用时 0 毫秒
1.
Claudia Dumrese Urs Ziegler Awdhesh Kalia Wei Lu Mohammed Benghezal Peer R.E. Mittl 《FEBS letters》2009,583(10):1637-1643
Helicobacter pylori genomes typically contain 8 or 9 genes that code for secreted and highly disulfide-bridged proteins designated Helicobacter cysteine-rich proteins (Hcp). Here we show that HcpA (hp0211) but not HcpC (hp1098) triggers the differentiation of human myeloid Thp1 monocytes into macrophages. Small amounts of HcpA cause the transition of round-shaped monocytes into cells with star-like morphologies, adherence to the culture dish surface, phagocytosis of opsonized fluorescent microspheres, and expression of the surface marker protein CD11b, all of which are indicative of a macrophage-like phenotype. We conclude that HcpA acts as a bacterial immune modulator similar to a eukaryotic cytokine. 相似文献
2.
Katia Zanier Christine Ruhlmann Murielle Masson Xavier Bernard Laurent Brino Vladimir Rybin Scott Vande Pol Patrick Schultz 《Journal of molecular biology》2010,396(1):90-1383
Papillomavirus E6 oncoproteins bind and often provoke the degradation of many cellular proteins important for the control of cell proliferation and/or cell death. Structural studies on E6 proteins have long been hindered by the difficulties of obtaining highly concentrated samples of recombinant E6. Here, we show that recombinant E6 proteins from eight human papillomavirus strains and one bovine papillomavirus strain exist as oligomeric and multimeric species. These species were characterized using a variety of biochemical and biophysical techniques, including analytical gel filtration, activity assays, surface plasmon resonance, electron microscopy and Fourier transform infrared spectroscopy. The characterization of E6 oligomers is facilitated by the fusion to the maltose binding protein, which slows the formation of higher-order multimeric species. The proportion of each oligomeric form varies depending on the viral strain considered. Oligomers appear to consist of folded units, which, in the case of high-risk mucosal human papillomavirus E6, retain binding to the ubiquitin ligase E6-associated protein and the capacity to degrade the proapoptotic protein p53. In addition to the small-size oligomers, E6 proteins spontaneously assemble into large organized multimeric structures, a process that is accompanied by a significant increase in the β-sheet secondary structure content. Finally, co-localisation experiments using E6 equipped with different tags further demonstrate the occurrence of E6 self-association in eukaryotic cells. The ensemble of these data suggests that self-association is a general property of E6 proteins that occurs both in vitro and in vivo and might therefore be functionally relevant. 相似文献
3.
(1)H/(15)N heteronuclear NMR spectroscopy shows four dynamic domains for phospholamban reconstituted in dodecylphosphocholine micelles 下载免费PDF全文
We report the backbone dynamics of monomeric phospholamban in dodecylphosphocholine micelles using (1)H/(15)N heteronuclear NMR spectroscopy. Phospholamban is a 52-amino acid membrane protein that regulates Ca-ATPase in cardiac muscle. Phospholamban comprises three structural domains: a transmembrane domain from residues 22 to 52, a connecting loop from 17 to 21, and a cytoplasmic domain from 1 to 16 that is organized in an "L"-shaped structure where the transmembrane and the cytoplasmic domain form an angle of approximately 80 degrees (Zamoon et al., 2003; Mascioni et al., 2002). T(1), T(2), and (1)H/(15)N nuclear Overhauser effect values measured for the amide backbone resonances were interpreted using the model-free approach of Lipari and Szabo. The results point to the existence of four dynamic domains, revealing the overall plasticity of the cytoplasmic helix, the flexible loop, and part of the transmembrane domain (residues 22-30). In addition, using Carr-Purcell-Meiboom-Gill-based experiments, we have characterized phospholamban dynamics in the micros-ms timescale. We found that the majority of the residues in the cytoplasmic domain, the flexible loop, and the first ten residues of the transmembrane domain undergo dynamics in the micros-ms range, whereas minimal dynamics were detected for the transmembrane domain. Hydrogen/deuterium exchange factors measured at different temperatures support the existence of slow motion in both the loop and the cytoplasmic helix. We propose that these dynamic properties are critical factors in the biomolecular recognition of phospholamban by Ca-ATPase and other interacting proteins such as protein kinase A and protein phosphatase 1. 相似文献
4.
5.
Insulin-like factor binding protein-3 promotes the G1 cell cycle arrest in several cancer cell lines
Chen Wu Xiaobo Liu Yuanyuan Wang Huanna Tian Yuanyuan Xie Qinjian Li Xiaokang Zhang Fangming Liu 《Gene》2013
Insulin-like growth factor binding protein-3 (IGFBP-3) is a multi-functional protein known to induce apoptosis of various cancer cells in an insulin-like growth factor (IGF)-dependent and IGF-independent manner. In our previous study, we found that IGFBP-3 induced apoptosis through the activation of caspases in 786-O cells. In this study, we further examined that whether IGFBP-3 induced apoptosis through the induction of cell cycle arrest in 786-O, A549 and MCF-7 cells. Our results showed that overexpressed IGFBP-3 resulted in typical apoptotic ultrastructures in A549 cells under transmission electron microscope. The result of flow cytometry analysis indicated that IGFBP-3 arrested the cell cycle at G1-S phase in 786-O, A549 and MCF-7 cells. In A549 cells, quantitative real-time PCR and Western blot analysis showed a significant change in the expression of cell cycle-regulated proteins—a decrease in cyclin E1 expression, an increase in p21 expression. These results indicate a possible mechanism for G1 cell cycle arrest by IGFBP-3. Taken together, cyclin E1 and p21 may play important roles in the IGFBP-3-inducing G1 cell cycle arrest and apoptosis in several human cancer cells. 相似文献
6.
We demonstrate that small engineered single-chain binding proteins based on the lipocalin scaffold, so-called Anticalins, can be functionally displayed on the Gram-negative bacterial cell envelope. To this end, the β-domains of five different bacterial autotransporters (the IgA protease from Neisseria gonorrhoeae, the esterase EstA from Pseudomonas aeruginosa, the YpjA autotransporter from E. coli K12, the AIDA-I adhesin from enteropathogenic E. coli O127:H27 strain 2787 and the protease EspP from enterohemorrhagic E. coli O157:H7 strain EDL933) were compared with respect to display level, functional variance, and bacterial cell viability. Use of the EspP autotransporter led to a system with high genetic stability for the display of fully functional Anticalins in high density on the cell surface of E. coli as shown by quantitative flow cytofluorimetry. This system was applied to engineer an immunostimulatory Anticalin that binds and blocks the extracellular region of human CTLA-4 to achieve a slower dissociation rate. A combinatorial library of the original Anticalin was generated by error-prone PCR, subjected to E. coli cell surface display, and applied to repeated cycles of cell sorting after incubation with the fluorescently labelled target protein under competition with the unlabelled extracellular domain of CTLA-4. The resulting Anticalin variants, which were expressed and purified as soluble proteins, showed more than eightfold decelerated target dissociation, as revealed by real time surface plasmon resonance analysis. Hence, the EspP autotransporter-mediated E. coli surface display in combination with high-throughput fluorescence-activated cell sorting (FACS) provides an efficient strategy to select for Anticalins, and possibly other small protein scaffolds, with improved binding properties, which is particularly useful for in vitro affinity maturation but may also serve for the selection of novel target specificity from naive libraries. 相似文献
7.
Silvia C. Locatelli-Hoops Inna Gorshkova Klaus Gawrisch Alexei A. Yeliseev 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(10):2045-2056
Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2. 相似文献
8.
Due to their high hydrophobicity, it is a challenge to obtain high yields of transmembrane peptides for structural and functional characterization. In the present work, a robust method is developed for the expression, purification and reconstitution of transmembrane peptides, especially for those containing conserved methionines. By using a truncated and mutated glutathione-S-transferase construct as the carrier protein and hydroxylamine (which specifically cleaves the peptide bond between Asn and Gly) as the cleavage reagent, 10 mg of the first transmembrane helix of CorA, a Mg2+ transporter from Mycobacterium tuberculosis, can be conveniently obtained with high purity from 1 L of M9 minimal media under optimized conditions. The biophysical properties of the peptide were studied by circular dichroism and nuclear magnetic resonance spectroscopy, and the results show that this CorA peptide is well folded in detergent micelles and the secondary structure is very similar to that in recent crystal structures. In addition, this CorA construct is oligomeric in perfluoro-octanoic acid micelles. The compatibility with the transmembrane peptides containing conserved methionines, the high yield and the simple process make the present method competitive with other commonly used methods to produce such peptides for structural and functional studies. 相似文献
9.
10.
Splicing of eukaryal intron-containing tRNAs requires the action of the heterotetrameric splicing endonuclease, which is composed of two catalytic subunits, Sen34 and Sen2, and two structural subunits, Sen15 and Sen54. Here we report the solution structure of the human tRNA splicing endonuclease subunit HsSen15. To facilitate the structure determination, we removed the disordered 35 N-terminal and 14 C-terminal residues of the full-length protein to produce HsSen15(36-157). The structure of HsSen15(36-157), the first for a subunit of a eukaryal splicing endonuclease, revealed that the protein possesses a novel homodimeric fold. Each monomer consists of three alpha-helices and a mixed antiparallel/parallel beta-sheet, arranged in a topology similar to that of the C-terminal domain of Methanocaldococcus jannaschii endonuclease. The dimeric interface is dominated by a beta-barrel structure, formed by face-to-face packing of two, three-stranded beta-sheets. Each of the beta-sheets results from reciprocal parallel pairing of one beta-strand from one subunit with two other beta-strands from the symmetric subunit. The structural model provides insights into the functional assembly of the human tRNA splicing endonuclease. 相似文献