首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The folding pathways of four mutants in which bulky hydrophobic residues in the B helix of apomyoglobin (ApoMb) are replaced by alanine (I28A, L29A, I30A, and L32A) have been analyzed using equilibrium and kinetic methods employing NMR, CD, fluorescence and mass spectrometry. Hydrogen exchange pulse-labeling followed by mass spectrometry reveals detectable intermediates in the kinetic folding pathways of each of these mutants. Comparison of the quench-flow data analyzed by NMR for the wild-type protein and the mutants showed that the substitutions I28A, L29A and L32A lead to destabilization of the B helix in the burst phase kinetic intermediate, relative to wild-type apomyoglobin. In contrast, the I30A mutation apparently has a slight stabilizing effect on the B helix in the burst phase intermediate; under weak labeling conditions, residues in the C helix region were also relatively stabilized in the mutant compared to the wild-type protein. This suggests that native-like helix B/helix C packing interactions occur in the folding intermediate. The L32A mutant showed significantly lower proton occupancies in the burst phase for several residues in the G helix, specifically F106, I107, E109 and A110, which are in close proximity to L32 in the X-ray structure of myoglobin, providing direct evidence that native-like helix B/helix G contacts are formed in the apomyoglobin burst phase intermediate. The L29A mutation resulted in an increase in burst phase proton occupancies for several residues in the E helix. Since these regions of the B and E helices are not in contact in the native myoglobin structure, these effects suggest the possibility of non-native B/E packing interactions in the kinetic intermediate. The differing effects of these B helix mutations on the apomyoglobin folding process suggests that each side-chain plays a different and important role in forming stable structure in the burst phase intermediate, and points to a role for both native-like and non-native contacts in stabilization of the folding intermediate.  相似文献   

2.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

3.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

4.
Ribeiro EA  Ramos CH 《Biochemistry》2005,44(12):4699-4709
We studied the effect of deleted and circularly permuted mutations in sperm whale myoglobin and present here results on three classes of mutants: (i) a deletion mutant, Mb(1)(-)(99), in which the C-terminal helices, G and H, were removed; (ii) two circular permutations, Mb-B_GHA, in which helix B is N-terminal and helix A is C-terminal, and Mb-C_GHAB, in which helix C is N-terminal and helices A and B are C-terminal; and (iii) a deleted circular permutation, Mb-HAB_F, in which helix H is N-terminal, helix F is C-terminal, and helix G is deleted. The conformational characteristics of the apo and holo forms of these mutants were determined at neutral pH, by spectroscopic and hydrodynamic methods. The apo form of the deleted and permuted mutants exhibited a stronger tendency to aggregate and had lower ellipticity than the wild type. The mutants retained the ability to bind heme, but only the circularly permuted holoproteins had native-like heme binding and folding. These results agree with the theory that myoglobin has a central core that is able to bind heme, but also indicate that the presence of N- and C-terminal helices is necessary for native-like heme pocket formation. Because the holopermuteins were less stable than the wild-type protein and aggregated, we propose that the native position of the N-terminus is important for the precise structural architecture of myoglobin.  相似文献   

5.
The FF domain from the human protein HYPA/FBP11 folds via a low-energy on-pathway intermediate (I). Elucidation of the structure of such folding intermediates and denatured states under conditions that favour folding are difficult tasks. Here, we investigated the millisecond time-scale equilibrium folding transition of the 71-residue four-helix bundle wild-type protein by (15)N, (13)C(alpha) and methyl(13)C Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiments and by (1)H/(2)H-exchange measurements. The relaxation data for the wild-type protein fitted a simple two-site exchange process between the folded state (F) and I. Destabilization of F in mutants A17G and Q19G allowed the detection of the unfolded state U by (15)N CPMG relaxation dispersion. The dispersion data for these mutants fitted a three-site exchange scheme, U<-->I<-->F, with I populated higher than U. The kinetics and thermodynamics of the folding reaction were obtained via temperature and urea-dependent relaxation dispersion experiments, along with structural information on I from backbone (15)N, (13)C(alpha) and side-chain methyl (13)C chemical shifts, with further information from protection factors for the backbone amide groups from (1)H/(2)H-exchange. Notably, helices H1-H3 are at least partially formed in I, while helix H4 is largely disordered. Chemical shift differences for the methyl (13)C nuclei suggest a paucity of stable, native-like hydrophobic interactions in I. These data are consistent with Phi-analysis of the rate-limiting transition state between I and F. The combination of relaxation dispersion and Phi data can elucidate whole experimental folding pathways.  相似文献   

6.
The F helix region of sperm whale apomyoglobin is disordered, undergoing conformational fluctuations between a folded helical conformation and one or more locally unfolded states. To examine the effects of F helix stabilization on the folding pathway of apomyoglobin, we have introduced mutations to augment intrinsic helical structure in the F helix of the kinetic folding intermediate and to increase its propensity to fold early in the pathway, using predictions based on plots of the average area buried upon folding (AABUF) derived from the primary sequence. Two mutant proteins were prepared: a double mutant, P88K/S92K (F2), and a quadruple mutant, P88K/A90L/S92K/A94L (F4). Whereas the AABUF for F2 predicts that the F helix will not fold early in the pathway, the F helix in F4 shows a significantly increased AABUF and is therefore predicted to fold early. Protection of amide protons by formation of hydrogen-bonded helical structure during the early folding events has been analyzed by pH-pulse labeling. Consistent with the AABUF prediction, many of the F helix residues for F4 are significantly protected in the kinetic intermediate but are not protected in the F2 mutant. F4 folds via a kinetically trapped burst-phase intermediate that contains stabilized secondary structure in the A, B, F, G, and H helix regions. Rapid folding of the F helix stabilizes the central core of the misfolded intermediate and inhibits translocation of the H helix back to its native position, thereby decreasing the overall folding rate.  相似文献   

7.
We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.  相似文献   

8.
An important question in protein folding is whether molten globule states formed under equilibrium conditions are good structural models for kinetic folding intermediates. The structures of the kinetic and equilibrium intermediates in the folding of the plant globin apoleghemoglobin have been compared at high resolution by quench-flow pH-pulse labeling and interrupted hydrogen/deuterium exchange analyzed in dimethyl sulfoxide. Unlike its well studied homolog apomyoglobin, where the equilibrium and kinetic intermediates are quite similar, there are striking structural differences between the intermediates formed by apoleghemoglobin. In the kinetic intermediate, formed during the burst phase of the quench-flow experiment, protected amides and helical structure are found mainly in the regions corresponding to the G and H helices of the folded protein, and in parts of the E helix and CE loop regions, whereas in the equilibrium intermediate, amide protection and helical structure are seen in parts of the A and B helix regions, as well as in the G and H regions, and the E helix remains largely unfolded. These results suggest that the structure of the molten globule intermediate of apoleghemoglobin is more plastic than that of apomyoglobin, so that it is readily transformed depending on the solution conditions, particularly pH. Thus, in the case of apoleghemoglobin at least, the equilibrium molten globule formed under destabilizing conditions at acid pH is not a good model for the compact intermediate formed during kinetic refolding experiments. Our high-precision kinetic analysis also reveals an additional slow phase during the folding of apoleghemoglobin, which is not observed for apomyoglobin. Hydrogen exchange pulse-labeling experiments show that the slow-folding phase is associated with residues in the CE loop, which probably forms non-native structure in the intermediate that must be resolved before folding can proceed to completion.  相似文献   

9.
Previous work shows that the transiently populated, on-pathway intermediate in Im7 folding contains three of the four native alpha-helices docked around a core stabilised by native and non-native interactions. To determine the structure and dynamic properties of this species in more detail, we have used protein engineering to trap the intermediate at equilibrium and analysed the resulting proteins using NMR spectroscopy and small angle X-ray scattering. Four variants were created. In L53AI54A, two hydrophobic residues within helix III are truncated, preventing helix III from docking stably onto the developing hydrophobic core. In two other variants, the six residues encompassing the native helix III were replaced with three (H3G3) or six (H3G6) glycine residues. In the fourth variant, YY, two native tyrosine residues (Tyr55 and Tyr56) were re-introduced into H3G6 to examine their role in determining the properties of the intermediate ensemble. All four variants show variable peak intensities and broad peak widths, consistent with these proteins being conformationally dynamic. Chemical shift analyses demonstrated that L53AI54A and YY contain native-like secondary structure in helices I and IV, while helix II is partly formed and helix III is absent. Lack of NOEs and rapid NH exchange for L53AI54A, combined with detailed analysis of the backbone dynamics, indicated that the hydrophobic core of this variant is not uniquely structured, but fluctuates on the NMR timescale. The results demonstrate that though much of the native-like secondary structure of Im7 is present in the variants, their hydrophobic cores remain relatively fluid. The comparison of H3G3/H3G6 and L53AI54A/YY suggests that Tyr55 and/or Tyr56 interact with the three-helix core, leading other residues in this region of the protein to dock with the core as folding progresses. In this respect, the three-helix bundle acts as a template for formation of helix III and the creation of the native fold.  相似文献   

10.
We have used molecular dynamics simulation methods to study the structure and fluctuations of "native" apomyoglobin in aqueous solution for a period of greater than 0.5 nanosecond. This work was motivated by the recent attempts of Hughson et al. to characterize the structure and motion of both this molecule and the less compact, acid stabilized I stage, using methods of pulsed H/2H exchange. The study of these systems provides new insights into protein folding intermediates and our simulation has yielded a detailed model for structure and fluctuations in apomyoglobin which complements the experimental studies. We find that local (short-time) fluctuations agree well with fluctuations observed for the holoprotein in aqueous solution, as well as results from the crystallographic B-factors. In addition, the structural features we observe for native apomyoglobin are very similar to the holoprotein, in basic agreement with the findings of Hughson et al. By examining larger-scale motions, developing only over timescales in excess of a 100 picoseconds, we are able to identify conformationally "labile" and "non-labile" regions within native apomyoglobin. These regions correspond extremely well to those identified in the nuclear magnetic resonance experiments as unstable and stable "folding subdomains" in the I state of apomyoglobin. Overall we find that helices A, B, E, G and H show the least amount of motion and helices C, D and F move substantially over the timescales examined. The major motions, and the primary difference between the holo and apo structures as we have observed them, are due to the shifting motion of helices C, D and F into the vacant heme cavity. We also find that motions at the interface of helical segments can be large, with one important exception being the chain segment connecting helices G and H. This segment of chain interacts with the conformationally "non-labile" helix A to form a relatively rigid subdomain composed of helices A, G and H. We believe that these findings provide direct support for the suggestion of Hughson et al. that helices A, G and H constitute a compact subdomain that remains in a native-like conformation as the protein begins to unfold in environments of decreasing pH.  相似文献   

11.
Eliezer D  Chung J  Dyson HJ  Wright PE 《Biochemistry》2000,39(11):2894-2901
The partly folded state of apomyoglobin at pH 4 represents an excellent model for an obligatory kinetic folding intermediate. The structure and dynamics of this intermediate state have been extensively examined using NMR spectroscopy. Secondary chemical shifts, (1)H-(1)H NOEs, and amide proton temperature coefficients have been used to probe residual structure in the intermediate state, and NMR relaxation parameters T(1) and T(2) and ?(1)H?-(15)N NOE have been analyzed using spectral densities to correlate motion of the polypeptide chain with these structural observations. A significant amount of helical structure remains in the pH 4 state, indicated by the secondary chemical shifts of the (13)C(alpha), (13)CO, (1)H(alpha), and (13)C(beta) nuclei, and the boundaries of this helical structure are confirmed by the locations of (1)H-(1)H NOEs. Hydrogen bonding in the structured regions is predominantly native-like according to the amide proton chemical shifts and their temperature dependence. The locations of the A, G, and H helix segments and the C-terminal part of the B helix are similar to those in native apomyoglobin, consistent with the early, complete protection of the amides of residues in these helices in quench-flow experiments. These results confirm the similarity of the equilibrium form of apoMb at pH 4 and the kinetic intermediate observed at short times in the quench-flow experiment. Flexibility in this structured core is severely curtailed compared with the remainder of the protein, as indicated by the analysis of the NMR relaxation parameters. Regions with relatively high values of J(0) and low values of J(750) correspond well with the A, B, G, and H helices, an indication that nanosecond time scale backbone fluctuations in these regions of the sequence are restricted. Other parts of the protein show much greater flexibility and much reduced secondary chemical shifts. Nevertheless, several regions show evidence of the beginnings of helical structure, including stretches encompassing the C helix-CD loop, the boundary of the D and E helices, and the C-terminal half of the E helix. These regions are clearly not well-structured in the pH 4 state, unlike the A, B, G, and H helices, which form a native-like structured core. However, the proximity of this structured core most likely influences the region between the B and F helices, inducing at least transient helical structure.  相似文献   

12.
The effect of the distribution of charged residues on stability of alpha helices in isolated peptides and in globular proteins exemplified by myoglobins from 62 different species is discussed. A highly simplified set of rules is used to account for the interaction of charged groups with the dipole of an alpha helix. Only the position and sign of a charge with respect to the center of the helix and its ability to participate in intrahelical salt bridges determine its effect. These rules lead to a linear correlation between the helicity in variant C-peptide helices from RNAse and the extent to which the charge distribution opposes the helix dipole. Of the sample of 496 helices in the myoglobins studied, 456 exhibit arrangements of charges which oppose the effective dipole moment of the helix according to this calculation. A number of variants occur which leave the backbone moment of helices A-D unchanged, or even add to it. However no such variants exist in the sequences of helices E-H. We suggest that the E, F, G and H helices in myoglobins which show the strongest reversal of the helix dipole participate in the structures of early intermediates in folding of the chain. Stable helix structures should be more likely to occur in these isolated sequences also, and introduction of charge alterations in helices E to H should affect the initial refolding rate of mutant myoglobins.  相似文献   

13.
Vuletich DA  Falzone CJ  Lecomte JT 《Biochemistry》2006,45(47):14075-14084
The recombinant two-on-two hemoglobin from the cyanobacterium Synechoccocus sp. PCC 7002 (S7002 rHb) is a bishistidine hexacoordinate globin capable of forming a covalent cross-link between a heme vinyl and a histidine in the C-terminal helix (H helix). Of the two heme axial histidines, His46 (in the E helix, distal side) and His70 (in the F helix, proximal histidine), His46 is displaced by exogenous ligands. S7002 rHb can be readily prepared as an apoglobin (apo-rHb), a non-cross-linked hemichrome (ferric iron and histidine axial ligands, rHb-R), and a cross-linked hemichrome (rHb-A). To determine the effects of heme binding and subsequent cross-linking, apo-rHb, rHb-R, and rHb-A were subjected to thermal denaturation and 1H/2H exchange. Interpretation of the latter data was based on nuclear magnetic resonance assignments obtained with uniformly 15N- and 13C,15N-labeled proteins. Apo-rHb was found to contain a cooperative structural core, which was extended and stabilized by heme binding. Cross-linking resulted in further stabilization attributed mainly to an unfolded-state effect. Protection factors were higher at the cross-link site and near His70 in rHb-A than in rHb-R. In contrast, other regions became less resistant to exchange in rHb-A. These included portions of the B and E helices, which undergo large conformational changes upon exogenous ligand binding. Thus, the cross-link readjusted the dynamic properties of the heme pocket. 1H/2H exchange data also revealed that the B, G, and H helices formed a robust core regardless of the presence of the heme or cross-link. This motif likely encompasses the early folding nucleus of two-on-two globins.  相似文献   

14.
The hydrogen exchange behavior of exchangeable protons in proteins can provide important information for understanding the principles of protein structure and function. The positions and exchange rates of the slowly-exchanging amide protons in sperm whale myoglobin have been mapped using 15N-1H NMR spectroscopy. The slowest-exchanging amide protons are those that are hydrogen bonded in the longest helices, including members of the B, E, and H helices. Significant protection factors were observed also in the A, C, and G helices, and for a few residues in the D and F helices. Knowledge of the identity of slowly-exchanging amide protons forms the basis for the extensive quench-flow kinetic folding experiments that have been performed for myoglobin, and gives insights into the tertiary interactions and dynamics in the protein.  相似文献   

15.
Luo Y  Baldwin RL 《Biochemistry》2001,40(17):5283-5289
The apomyoglobin molten globule has a complex, partly folded structure with a folded A[B]GH subdomain; the factors determining its stability are not yet known in detail. Ala-->Gly mutations, made at solvent-exposed positions, are used to probe the role of helix propensity of individual helices in stabilizing the molten globule. Molten globule stability is measured by reversible urea unfolding, monitored both by circular dichroism and by tryptophan fluorescence. Two-state unfolding is tested by superposition of these two unfolding curves, and stability data are reported only for variants which satisfy the superposition test. Results for sites Q8 in the A helix and E109 in the G helix confirm that the helix propensities of the A and G helices both strongly affect molten globule stability, in contrast to results for the G65A/G73A double mutant which show that changing the helix propensity of the E-helix sequence has no significant stabilizing effect. Changing the helix propensity of the B-helix sequence with the G23A/G25A double mutant affects molten globule stability to an intermediate extent, confirming an earlier report that this mutant has increased stability. These results are consistent with the bipartite structure for the molten globule in which the A, G, and H helices are stably folded, while the long E helix is unfolded and the B helix has intermediate stability. Some differences are found in the shapes of the unfolding curves of different mutants even though they satisfy the superposition test for two-state unfolding, and possible explanations are discussed.  相似文献   

16.
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant.  相似文献   

17.
Dynamic properties of deoxymyoglobin are studied theoretically by the analysis of conformational fluctuations. Root-mean-square atomic fluctuations and distance fluctuations between different segments reveal the mechanical construction of the molecule. Eight alpha-helices behave as relatively rigid bodies and corner regions are more flexible, showing larger fluctuations. More particularly, corner regions EF and GH are specific in that flanking alpha-helices extend their rigidity up to a point in the corner region and the two rigid segments are connected flexibly at that point. The FG corner is exceptional. A segment from the F helix to the beginning of the G helix, in which the FG corner is included, becomes relatively rigid by means of strong interactions with the heme group. The whole myoglobin molecule is divided into two large units of motion, one extending from the B to the E helix, and the other from the F to the H helix. These two units are connected covalently by the EF corner. However, dynamic interactions between these two units take place mainly through contacts between helices B and G and not through the EF corner. From correlation coefficients between fluctuational motions of residues and the heme group, 55 residues are identified as having strong dynamic interactions with the heme moiety. Among them, 18 residues in the three segments, one consisting of residues from the C helix to the CD corner, a second consisting of the E helix, and a third from the F helix to the beginning of the G helix, are in close contact with the heme group. Twenty-two of the 55 residues are within four residues of the 18 residues in their sequential residue number and are more than 3 A away from the heme group. The other 15 residues are located further in the sequential residue number and are all found in helices A and H. They are more than 6 A away from the heme group. By the use of correlation coefficients of fluctuations between residues, it is found that dynamic interaction with the heme group is transmitted to the A helix and the beginning of the H helix in the direction Leu(E15)----[Val(All) and Trp(A12)]. The transmission to the C-terminal end of the H helix is mediated by a long segment, from the end of the EF corner to the beginning of the G helix, that lies on the heme group and has close contacts over a wide range.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
To test the hypothesis that the folding pathways of evolutionarily related proteins with similar three-dimensional structures but widely different sequences should be similar, the folding pathway of apoleghemoglobin has been characterized using stopped-flow circular dichroism, heteronuclear NMR pulse labeling techniques and mass spectrometry. The pathway of folding was found to differ significantly from that of a protein of the same family, apomyoglobin, although both proteins appear to fold through helical burst phase intermediates. For leghemoglobin, the burst phase intermediate exhibits stable helical structure in the G and H helices, together with a small region in the center of the E helix. The A and B helices are not stabilized until later stages of the folding process. The structure of the burst phase folding intermediate thus differs from that of apomyoglobin, in which stable helical structure is formed in the A, B, G and H helix regions.  相似文献   

19.
The folding pathway of the histone H2A-H2B heterodimer minimally includes an on-pathway, dimeric, burst-phase intermediate, I2. The partially folded H2A and H2B monomers populated at equilibrium were characterized as potential monomeric kinetic intermediates. Folding kinetics were compared for initiation from isolated, folded monomers and the heterodimer unfolded in 4 M urea. The observed rates were virtually identical above 0.4 M urea, exhibiting a log-linear relationship on the final denaturant concentration. Below ∼ 0.4 M urea (concentrations inaccessible from the  4-M urea unfolded state), a rollover in the rates was observed; this suggests that a component of the I2 ensemble contains non-native structure that rearranges/isomerizes to a more native-like species. The contribution of helix propensity to the stability of the I2 ensemble was assessed with a set of H2A-H2B mutants containing Ala and Gly replacements at nine sites, focusing mainly on the long, central α2 helix. Equilibrium and kinetic folding/unfolding data were collected to determine the effects of the mutations on the stability of I2 and the transition state between I2 and N2. This limited mutational study indicated that residues in the α2 helices of H2A and H2B as well as α1 of H2B and both the C-terminus of α3 and the short αC helix of H2A contribute to the stability of the I2 burst-phase species. Interestingly, at least eight of the nine targeted residues stabilize I2 by interactions that are non-native to some extent. Given that destabilizing I2 and these non-native interactions does not accelerate folding, it is concluded that the native and non-native structures present in the I2 ensemble enable efficient folding of H2A-H2B.  相似文献   

20.
In a previous study 23 residues in helix XI of the cysteine-less melibiose carrier were changed individually to cysteine. Several of these cysteine mutants (K377C, A383C, F385C, L391C, G395C) had low transport activity and they were white on melibiose MacConkey fermentation plates. After several days of incubation of these white clones on melibiose MacConkey plates a rare red mutant appeared. The plasmid DNA was then isolated and sequenced. The two second site revertants from K377C were I22S and D59A. This change of aspartic acid to a neutral residue suggests that physiologically there is an interaction between K377 and D59 (possibly a salt bridge). The revertants from A383C were in positions 20 (F20L) and 22 (I22S and I22N). Revertants of F385C were intrahelical changes (I387M and A388G) and a change in C-terminal loop (R441C). Revertants of L391C were in helix I (I22N, I22T and D19E) and helix V (A152S). Revertants of G395C were in helix I (D19E and I22N). We suggest that there is an interaction between helix XI and helices I, II, and V and proximity between these helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号