首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The second committed step in chlorophyll biosynthesis is the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to magnesium protoporphyrin IX (MgP) forming MgP monomethylester (MgPME). This reaction is catalyzed by the enzyme MgP methyltransferase (ChlM). Previous investigation of this enzyme has involved the use of time-consuming techniques requiring separation of products from substrates. More recent methyltransferase studies use coupling enzymes to monitor changes in absorption/fluorescence for the measurement of activity. However, due to the spectral properties of porphyrins, many of these assays are unsuitable for analysis of the catalytic properties of ChlM. Here we report the successful development of a coupled, continuous spectrophotometric assay to measure the activity of ChlM. The product of the methyltransferase reaction, S-adenosyl-l-homocysteine (SAH), is converted into adenine and then hypoxanthine by the recombinant coupling enzymes SAH nucleosidase and adenine deaminase, respectively. The appearance of hypoxanthine results in a decrease in absorbance at 265 nm.The utility of this assay was shown by the characterization of ChlM from the cyanobacterium Synechocystis sp. PCC 6803. Kinetic parameters obtained support data acquired using the discontinuous HPLC-based assay and provide further evidence for the stimulation of ChlM by the H subunit of magnesium chelatase (ChlH).  相似文献   

3.
O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-l-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.  相似文献   

4.
Rat kidney glutamine transaminase K (GTK) exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate β-lyase. The β-lyase reaction products are pyruvate, ammonium and a sulfhydryl-containing fragment. We show here that recombinant human GTK (rhGTK) also exhibits broad specificity both as an aminotransferase and as a cysteine S-conjugate β-lyase. S-(1,1,2,2-Tetrafluoroethyl)-l-cysteine is an excellent aminotransferase and β-lyase substrate of rhGTK. Moderate aminotransferase and β-lyase activities occur with the chemopreventive agent Se-methyl-l-selenocysteine. l-3-(2-Naphthyl)alanine, l-3-(1-naphthyl)alanine, 5-S-l-cysteinyldopamine and 5-S-l-cysteinyl-l-DOPA are measurable aminotransferase substrates, indicating that the active site can accommodate large aromatic amino acids. The α-keto acids generated by transamination/l-amino acid oxidase activity of the two catechol cysteine S-conjugates are unstable. A slow rhGTK-catalyzed β-elimination reaction, as measured by pyruvate formation, was demonstrated with 5-S-l-cysteinyldopamine, but not with 5-S-l-cysteinyl-l-DOPA. The importance of transamination, oxidation and β-elimination reactions involving 5-S-l-cysteinyldopamine, 5-S-l-cysteinyl-l-DOPA and Se-methyl-l-selenocysteine in human tissues and their biological relevance are discussed.  相似文献   

5.
tRNA:m5C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 Å and 2.3 Å resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix α8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.  相似文献   

6.
Heptoses are found in the surface polysaccharides of most bacteria, contributing to structures that are essential for virulence and antibiotic resistance. Consequently, the biosynthetic enzymes for these sugars are attractive targets for novel antibiotics. The best characterized biosynthetic enzyme is GmhA, which catalyzes the conversion of sedoheptulose-7-phosphate into d-glycero-d-manno-heptopyranose-7-phosphate, the first step in the biosynthesis of heptose. Here, the structure of GmhA from Burkholderia pseudomallei is reported. This enzyme contains a zinc ion at the heart of its active site: this ion stabilizes the active, closed form of the enzyme and presents coordinating side chains as a potential acid and base to drive catalysis. A complex with the product demonstrates that the enzyme retains activity in the crystal and thus suggests that the closed conformation is catalytically relevant and is an excellent target for the development of therapeutics. A revised mechanism for the action of GmhA is postulated on the basis of this structure and the activity of B. pseudomallei GmhA mutants.  相似文献   

7.
Methyltransferases from the m1A58 tRNA methyltransferase (TrmI) family catalyze the S-adenosyl-l-methionine-dependent N1-methylation of tRNA adenosine 58. The crystal structure of Thermus thermophilus TrmI, in complex with S-adenosyl-l-homocysteine, was determined at 1.7 Å resolution. This structure is closely related to that of Mycobacterium tuberculosis TrmI, and their comparison enabled us to enlighten two grooves in the TrmI structure that are large enough and electrostatically compatible to accommodate one tRNA per face of TrmI tetramer. We have then conducted a biophysical study based on electrospray ionization mass spectrometry, site-directed mutagenesis, and molecular docking. First, we confirmed the tetrameric oligomerization state of TrmI, and we showed that this protein remains tetrameric upon tRNA binding, with formation of complexes involving one to two molecules of tRNA per TrmI tetramer. Second, three key residues for the methylation reaction were identified: the universally conserved D170 and two conserved aromatic residues Y78 and Y194. We then used molecular docking to position a N9-methyladenine in the active site of TrmI. The N9-methyladenine snugly fits into the catalytic cleft, where the side chain of D170 acts as a bidentate ligand binding the amino moiety of S-adenosyl-l-methionine and the exocyclic amino group of the adenosine. Y194 interacts with the N9-methyladenine ring, whereas Y78 can stabilize the sugar ring. From our results, we propose that the conserved residues that form the catalytic cavity (D170, Y78, and Y194) are essential for fashioning an optimized shape of the catalytic pocket.  相似文献   

8.
The emergence of antibiotic-resistant bacterial strains is a widespread problem in contemporary medical practice and drug design. It is therefore important to elucidate the underlying mechanism in each case. The methyltransferase AviRa from Streptomyces viridochromogenes mediates resistance to the antibiotic avilamycin, which is closely related to evernimicin, an oligosaccharide antibiotic that has been used in medical studies. The structure of AviRa was determined by X-ray diffraction at 1.5A resolution. Phases were obtained from one selenomethionine residue introduced by site-directed mutagenesis. The chain-fold is similar to that of most methyltransferases, although AviRa contains two additional helices as a specific feature. A putative-binding site for the cofactor S-adenosyl-L-methionine was derived from homologous structures. It agrees with the conserved pattern of interacting amino acid residues. AviRa methylates a specific guanine base within the peptidyltransferase loop of the 23S ribosomal RNA. Guided by the target, the enzyme was docked to the cognate ribosomal surface, where it fit well into a deep cleft without contacting any ribosomal protein. The two additional alpha-helices of AviRa filled a depression in the surface. Since the transferred methyl group of the cofactor is in a pocket beneath the enzyme surface, the targeted guanine base has to flip out for methylation.  相似文献   

9.
Epigenetic regulation through protein posttranslational modifications is essential in development and disease. Among the key chemical modifications is protein methylation carried out by protein methyltransferases (PMTs). Quantitative and sensitive PMT activity assays can provide valuable tools to investigate PMT functions. Here we developed an enzyme-coupled luminescence assay for S-adenosyl-l-methionine (AdoMet/SAM)-based PMTs. In this assay, S-adenosyl-l-homocystine (AdoHcy/SAH), the by-product of PMT-involved methylation, is sequentially converted to adenine, adenosine monophosphate, and then adenosine 5′-triphosphate (ATP) by 5′-methylthio-adenosine/AdoHcy nucleosidase (MTAN), adenine phosphoribosyl transferase (APRT), and pyruvate orthophosphate dikinase (PPDK), respectively. The resultant ATP can be readily quantified with a luciferin/luciferase kit. This assay is featured for its quantitative linear response to AdoHcy and the ultrasensitivity to 0.3 pmol of AdoHcy. With this assay, the kinetic parameters of SET7/9 methylation were characterized and unambiguously support an ordered mechanism with AdoMet binding as the initial step, followed by the substrate binding and the rate-limiting methylation. The luminescence assay is also expected to be generally applicable to many other AdoMet-dependent enzymes. In addition, the mix-and-measure 96-/384-well format of our assay makes it suitable for automation and high throughput. Our enzyme-coupled luminescence assay, therefore, represents a convenient and ultrasensitive approach to examine methyltransferase activities and identify methyltransferase inhibitors.  相似文献   

10.
The role of Glu119 in S-adenosyl-L-methionine-dependent DNA methyltransferase M.HhaI-catalyzed DNA methylation was studied. Glu119 belongs to the highly conserved Glu/Asn/Val motif found in all DNA C5-cytosine methyltransferases, and its importance for M.HhaI function remains untested. We show that formation of the covalent intermediate between Cys81 and the target cytosine requires Glu119, since conversion to Ala, Asp or Gln lowers the rate of methyl transfer 10(2)-10(6) fold. Further, unlike the wild-type M.HhaI, these mutants are not trapped by the substrate in which the target cytosine is replaced with the mechanism-based inhibitor 5-fluorocytosine. The DNA binding affinity for the Glu119Asp mutant is decreased 10(3)-fold. Thus, the ability of the enzyme to stabilize the extrahelical cytosine is coupled directly to tight DNA binding. The structures of the ternary protein/DNA/AdoHcy complexes for both the Glu119Ala and Glu119Gln mutants (2.70 A and 2.75 A, respectively) show that the flipped base is positioned nearly identically with that observed in the wild-type M.HhaI complex. A single water molecule in the Glu119Ala structure between Ala119 and the extrahelical cytosine N3 is lacking in the Glu119Gln and wild-type M.HhaI structures, and most likely accounts for this mutant's partial activity. Glu119 has essential roles in activating the target cytosine for nucleophilic attack and contributes to tight DNA binding.  相似文献   

11.
The mRNA-capping process starts with the conversion of a 5′-triphosphate end into a 5′-diphosphate by an RNA triphosphatase, followed by the addition of a guanosine monophosphate unit in a 5′-5′ phosphodiester bond by a guanylyltransferase. Methyltransferases are involved in the third step of the process, transferring a methyl group from S-adenosyl-l-methionine to N7-guanine (cap 0) and to the ribose 2′OH group (cap 1) of the first RNA nucleotide; capping is essential for mRNA stability and proper replication. In the genus Flavivirus, N7-methyltransferase and 2′O-methyltransferase activities have been recently associated with the N-terminal domain of the viral NS5 protein. In order to further characterize the series of enzymatic reactions that support capping, we analyzed the crystal structures of Wesselsbron virus methyltransferase in complex with the S-adenosyl-l-methionine cofactor, S-adenosyl-l-homocysteine (the product of the methylation reaction), Sinefungin (a molecular analogue of the enzyme cofactor), and three different cap analogues (GpppG, N7MeGpppG, and N7MeGpppA). The structural results, together with those on other flaviviral methyltransferases, show that the capped RNA analogues all bind to an RNA high-affinity binding site. However, lack of specific interactions between the enzyme and the first nucleotide of the RNA chain suggests the requirement of a minimal number of nucleotides following the cap to strengthen protein/RNA interaction. Our data also show that, following incubation with guanosine triphosphate, Wesselsbron virus methyltransferase displays a guanosine monophosphate molecule covalently bound to residue Lys28, hinting at possible implications for the transfer of a guanine group to ppRNA. The structures of the Wesselsbron virus methyltransferase complexes obtained are discussed in the context of a model for N7-methyltransferase and 2′O-methyltransferase activities.  相似文献   

12.
Plant S-adenosyl-l-methionine-dependent class I natural product O-methyltransferases (OMTs), related to animal catechol OMTs, are dependent on bivalent cations and strictly specific for the meta position of aromatic vicinal dihydroxy groups. While the primary activity of these class I enzymes is methylation of caffeoyl coenzyme A OMTs, a distinct subset is able to methylate a wider range of substrates, characterized by the promiscuous phenylpropanoid and flavonoid OMT. The observed broad substrate specificity resides in two regions: the N-terminus and a variable insertion loop near the C-terminus, which displays the lowest degree of sequence conservation between the two subfamilies. Structural and biochemical data, based on site-directed mutagenesis and domain exchange between the two enzyme types, present evidence that only small topological changes among otherwise highly conserved 3-D structures are sufficient to differentiate between an enzymatic generalist and an enzymatic specialist in plant natural product methylation.  相似文献   

13.
Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the histone code. One common feature of these activities is the recognition of lysines in methylated and unmethylated states, whether they are substrates, reaction products, or binding partners. We applied the concept of adding a lysine mimic to an established inhibitor (BIX-01294) of histone H3 lysine 9 methyltransferases G9a and G9a-like protein by including a 5-aminopentyloxy moiety, which is inserted into the target lysine-binding channel and becomes methylated by G9a-like protein, albeit slowly. The compound enhances its potency in vitro and reduces cell toxicity in vivo. We suggest that adding a lysine or methyl-lysine mimic should be considered in the design of small-molecule inhibitors for other methyl-lysine writers, erasers, and readers.  相似文献   

14.
Arg165 forms part of a previously identified base flipping motif in the bacterial DNA cytosine methyltransferase, M.HhaI. Replacement of Arg165 with Ala has no detectable effect on either DNA or AdoMet affinity, yet causes the base flipping and restacking transitions to be decreased approximately 16 and 190-fold respectively, thus confirming the importance of this motif. However, these kinetic changes cannot account for the mutant's observed 10(5)-fold decreased catalytic rate. The mutant enzyme/cognate DNA cocrystal structure (2.79 A resolution) shows the target cytosine to be positioned approximately 30 degrees into the major groove, which is consistent with a major groove pathway for nucleotide flipping. The pyrimidine-sugar chi angle is rotated to approximately +171 degrees, from a range of -95 degrees to -120 degrees in B DNA, and -77 degrees in the WT M.HhaI complex. Thus, Arg165 is important for maintaining the cytosine positioned for nucleophilic attack by Cys81. The cytosine sugar pucker is in the C2'-endo-C3'-exo (South conformation), in contrast to the previously reported C3'-endo (North conformation) described for the original 2.70 A resolution cocrystal structure of the WT M.HhaI/DNA complex. We determined a high resolution structure of the WT M.HhaI/DNA complex (1.96 A) to better determine the sugar pucker. This new structure is similar to the original, lower resolution WT M.HhaI complex, but shows that the sugar pucker is O4'-endo (East conformation), intermediate between the South and North conformers. In summary, Arg165 plays significant roles in base flipping, cytosine positioning, and catalysis. Furthermore, the previously proposed M.HhaI-mediated changes in sugar pucker may not be an important contributor to the base flipping mechanism. These results provide insights into the base flipping and catalytic mechanisms for bacterial and eukaryotic DNA methyltransferases.  相似文献   

15.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   

16.
Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA•Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.  相似文献   

17.
Methylation of cytosine residues in the DNA is one of the most important epigenetic marks central to the control of differential expression of genes. We perform quantum mechanical calculations to investigate the catalytic mechanism of the bacterial HhaI DNA methyltransferase. We find that the enzyme nucleophile, Cys81, can attack C6 of cytosine only after it is deprotonated by the DNA phosphate group, a reaction facilitated by a bridging water molecule. This finding, which indicates that the DNA acts as both the substrate and the cofactor, can explain the total loss of activity observed in an analogous enzyme, thymidylate synthase, when the phosphate group of the substrate was removed. Furthermore, our results displaying the inability of the phosphate group to deprotonate the side chain of serine is in agreement with the total, or the large extent of, inactivity observed for the C81S mutant. In contrast to results from previous calculations, we find that the active site conserved residues, Glu119, Arg163, and Arg165, are crucial for catalysis. In addition, the enzyme-DNA adduct formation and the methyl transfer from the cofactor S-adenosyl-l-methionine are not concerted but proceed via stepwise mechanism. In many of the different steps of this methylation reaction, the transfer of a proton is found to be necessary. To render these processes possible, we find that several water molecules, found in the crystal structure, play an important role, acting as a bridge between the donating and accepting proton groups.  相似文献   

18.
N-acetyl-l-glutamate synthase (NAGS), the first enzyme of bacterial/plant arginine biosynthesis and an essential activator of the urea cycle in animals, is, respectively, arginine-inhibited and activated. Site-directed mutagenesis of recombinant Pseudomonas aeruginosa NAGS (PaNAGS) delineates the arginine site in the PaNAGS acetylglutamate kinase-like domain, and, by extension, in human NAGS. Key residues for glutamate binding are identified in the acetyltransferase domain. However, the acetylglutamate kinase-like domain may modulate glutamate binding, since one mutation affecting this domain increases the Km for glutamate. The effects on PaNAGS of two mutations found in human NAGS deficiency support the similarity of bacterial and human NAGSs despite their low sequence identity.  相似文献   

19.
Class A penicillin-binding proteins (PBPs) catalyze the last two steps in the biosynthesis of peptidoglycan, a key component of the bacterial cell wall. Both reactions, glycosyl transfer (polymerization of glycan chains) and transpeptidation (cross-linking of stem peptides), are essential for peptidoglycan stability and for the cell division process, but remain poorly understood. The PBP-catalyzed transpeptidation reaction is the target of β-lactam antibiotics, but their vast employment worldwide has prompted the appearance of highly resistant strains, thus requiring concerted efforts towards an understanding of the transpeptidation reaction with the goal of developing better antibacterials. This goal, however, has been elusive, since PBP substrates are rapidly deacylated. In this work, we provide a structural snapshot of a “trapped” covalent intermediate of the reaction between a class A PBP with a pseudo-substrate, N-benzoyl-d-alanylmercaptoacetic acid thioester, which partly mimics the stem peptides contained within the natural, membrane-associated substrate, lipid II. The structure reveals that the d-alanyl moiety of the covalent intermediate (N-benzoyl-d-alanine) is stabilized in the cleft by a network of hydrogen bonds that place the carbonyl group in close proximity to the oxyanion hole, thus mimicking the spatial arrangement of β-lactam antibiotics within the PBP active site. This arrangement allows the target bond to be in optimal position for attack by the acceptor peptide and is similar to the structural disposition of β-lactam antibiotics with PBP clefts. This information yields a better understanding of PBP catalysis and could provide key insights into the design of novel PBP inhibitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号