首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Apoptin, a small protein encoded by chicken anemia virus (CAV), induces cell death specifically in cancer cells. In normal cells, Apoptin remains in the cytoplasm; whereas in cancerous cells, it migrates into the nucleus and kills the cell. Cellular localization appears to be crucial. Through a yeast two-hybrid screen, we identified human Peptidyl-prolyl isomerase-like 3 (Ppil3) as one of the Apoptin-associated proteins. Ppil3 could bind Apoptin directly, and held Apoptin in cytoplasm even in tumor cells. We then demonstrated that the nuclearcytoplasmic distribution of Apoptin is related to the expression level of intrinsic Ppil3. Moreover, extrinsic modifying of Ppil3 levels also resulted in nuclearcytoplasmic shuffling of Apoptin. The Apoptin P109A mutant, located between the putative nuclear localization and export signals, could significantly impair the function of Ppil3. Our results suggest a new direction for the localization mechanism study of Apoptin in cells.  相似文献   

2.
3.
4.
Suppressor of cytokine signalling 3 (SOCS3) is responsible for regulating the cellular response to a variety of cytokines, including interleukin 6 and leukaemia inhibitory factor. Identification of the SOCS box domain led to the hypothesis that SOCS3 can associate with functional E3 ubiquitin ligases and thereby induce the degradation of bound signalling proteins. This model relies upon an interaction between the SOCS box, elonginBC and a cullin protein that forms the E3 ligase scaffold. We have investigated this interaction in vitro using purified components and show that SOCS3 binds to elonginBC and cullin5 with high affinity. The SOCS3-elonginBC interaction was further characterised by determining the solution structure of the SOCS box-elonginBC ternary complex and by deletion and alanine scanning mutagenesis of the SOCS box. These studies revealed that conformational flexibility is a key feature of the SOCS-elonginBC interaction. In particular, the SOCS box is disordered in isolation and only becomes structured upon elonginBC association. The interaction depends upon the first 12 residues of the SOCS box domain and particularly on a deeply buried, conserved leucine. The SOCS box, when bound to elonginBC, binds tightly to cullin5 with 100 nM affinity. Domains upstream of the SOCS box are not required for elonginBC or cullin5 association, indicating that the SOCS box acts as an independent binding domain capable of recruiting elonginBC and cullin5 to promote E3 ligase formation.  相似文献   

5.
Cell signaling pathways are essentially organized through the distribution of various types of binding domains in signaling proteins, with each domain binding to specific target molecules. Although identification of these targets is crucial for mapping the pathways, affinity-based or copurification methods are insufficient to distinguish between direct and indirect interactions in a cellular context. In the present study, we developed another approach involving the genetic encoding of a photo-crosslinkable amino acid. p-Trifluoromethyl-diazirinyl-l-phenylalanine was thus incorporated at a defined site in the Src homology 2 (SH2) domain of the adaptor protein GRB2 in human embryonic kidney cells. These cells were exposed to 365-nm light after an epidermal growth factor stimulus, and the crosslinkable GRB2-SH2 domain exclusively formed covalent bonds with directly interacting proteins. Proteomic mass spectrometry analysis identified these direct binders of GRB2-SH2 separately from the proteins noncovalently bound to the Src homology 3 domains of GRB2. In addition to two signaling-associated proteins (GIT1 and AF6), the heterogeneous nuclear ribonucleoproteins F, H1, and H2 were thus identified as novel direct binders. The results revealed a connection between the cell signaling protein and the nuclear machinery involved in mRNA processing, and demonstrated the usefulness of genetically encoded photo-crosslinkers for mapping protein-protein interactions in cells.  相似文献   

6.
Human LANCL2, also known as Testis-specific Adriamycin Sensitivity Protein (TASP), is a member of the highly conserved and widely distributed lanthionine synthetase component C-like (LANCL) protein family. Expression studies of tagged LANCL2 revealed the major localization to the plasma membrane, juxta-nuclear vesicles, and the nucleus, in contrast to the homologue LANCL1 that was mainly found in the cytosol and nucleus. We identified the unique N-terminus of LANCL2 to function as the membrane anchor and characterized the relevant N-terminal myristoylation and a basic phosphatidylinositol phosphate-binding site. Interestingly, the non-myristoylated protein was confined to the nucleus indicating that the myristoylation targets LANCL2 to the plasma membrane. Cholesterol depletion by methyl-β-cyclodextrin caused the partial dissociation of overexpressed LANCL2 from the plasma membrane in vitro, whereas in vivo we observed an enhanced cell detachment from the matrix. We found that overexpressed LANCL2 interacts with the cortical actin cytoskeleton and therefore may play a role in cytoskeleton reorganization and in consequence to cell detachment. Moreover, we confirmed previous data that LANCL2 overexpression enhances the cellular sensitivity to the anticancer drug adriamycin and found that this sensitivity is dependent on the myristoylation and membrane association of LANCL2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号