首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaphase-promoting complex or cyclosome (APC/C) is a large E3 RING-cullin ubiquitin ligase composed of between 14 and 15 individual proteins. A striking feature of the APC/C is that only four proteins are involved in directly recognizing target proteins and catalyzing the assembly of a polyubiquitin chain. All other subunits, which account for > 80% of the mass of the APC/C, provide scaffolding functions. A major proportion of these scaffolding subunits are structurally related. In metazoans, there are four canonical tetratricopeptide repeat (TPR) proteins that form homo-dimers (Apc3/Cdc27, Apc6/Cdc16, Apc7 and Apc8/Cdc23). Here, we describe the crystal structure of the N-terminal homo-dimerization domain of Schizosaccharomyces pombe Cdc23 (Cdc23Nterm). Cdc23Nterm is composed of seven contiguous TPR motifs that self-associate through a related mechanism to those of Cdc16 and Cdc27. Using the Cdc23Nterm structure, we generated a model of full-length Cdc23. The resultant “V”-shaped molecule docks into the Cdc23-assigned density of the human APC/C structure determined using negative stain electron microscopy (EM). Based on sequence conservation, we propose that Apc7 forms a homo-dimeric structure equivalent to those of Cdc16, Cdc23 and Cdc27. The model is consistent with the Apc7-assigned density of the human APC/C EM structure. The four canonical homo-dimeric TPR proteins of human APC/C stack in parallel on one side of the complex. Remarkably, the uniform relative packing of neighboring TPR proteins generates a novel left-handed suprahelical TPR assembly. This finding has implications for understanding the assembly of other TPR-containing multimeric complexes.  相似文献   

2.
Anaphase-promoting complex or cyclosome (APC/C) is an unusual E3 ubiquitin ligase and an essential protein that controls mitotic progression. APC/C includes at least 13 subunits, but no structure has been determined for any tetratricopeptide repeat (TPR)-containing subunit (Apc3 and -6-8) in the TPR subcomplex of APC/C. Apc7 is a TPR-containing subunit that exists only in vertebrate APC/C. Here we report the crystal structure of quad mutant of nApc7 (N-terminal fragment, residues 1-147) of human Apc7 at a resolution of 2.5 Å. The structure of nApc7 adopts a TPR-like motif and has a unique dimerization interface, although the protein does not contain the conserved TPR sequence. Based on the structure of nApc7, in addition to previous experimental findings, we proposed a putative homodimeric structure for full-length Apc7. This model suggests that TPR-containing subunits self-associate and bind to adaptors and substrates via an IR peptide in TPR-containing subunits of APC/C.Anaphase-promoting complex/cyclosome (APC/C)2 is an E3 ubiquitin ligase that controls mitotic progression (1). APC/C is an ∼1.7-MDa protein complex that is composed of at least 13 subunits, and it contains a cullin homolog (Apc2), a ring-H2 finger domain (Apc11), and a tetratricopeptide repeat (TPR)-containing subunit (TPR subunit; Apc3 and -6-8) (2). Most TPR subunits are essential and evolutionarily conserved in eukaryotes (3).APC/C requires two adaptors that contain a C-terminal WD40 domain, Cdc20 and Cdh1, to recruit and select various substrates at different stages of the cell cycle. Moreover, both adaptors and specific APC/C subunits contribute to substrate recognition (4).APC/C specifically ubiquitinates cell cycle regulatory proteins that contain destruction (D) or KEN box motifs (5-7), which target them for destruction by the 26 S proteosome (8). During the cell cycle, APC/C mediates the metaphase-anaphase transition by ubiquitinating and degrading securin, a separase inhibitor, which participates in the degradation of chromatic cohesion complexes and ubiquitinates B-type cyclin, thereby accelerating transition from the late mitotic phase to G1 (9). In addition to its primary role in cell cycle regulation, APC/C participates in postmitotic processes, such as regulation of synaptic size and axon growth (10, 11).To assess the mechanism that underlies cell cycle regulation by APC/C and the various roles of its subunits, we need to understand how APC/C is organized into higher order structures and the manner in which the subunits assemble. Although little is known regarding the crystal structures of APC/C components, three-dimensional models of APC/C have recently been obtained by cryo-negative staining EM in human, Xenopus laevis, Saccharomyces cerevisiae, and Schizosaccharomyces pombe (12-15). Several studies have indicated that APC/C assumes an asymmetric triangular shape that is composed of an outer shell and a cavity that extends through its center (12, 14). Furthermore, APC/C includes a catalytic subcomplex (Doc1/Apc10, Apc11, and Apc2), a structural complex (Apc1, Apc4, and Apc5), and a TPR subcomplex (TPR-containing subunits and nonessential subunits) (16).A TPR unit consists of a 34-residue repeat motif that adopts a helix-turn-helix conformation, which is associated with protein-protein interactions (17). Multiple copies of TPR-containing subunits are organized into the TPR subcomplex within APC/C, and this subcomplex is functionally important for the recruitment of adaptors and substrates (18). In fact, adaptors (Cdc20 and Cdh1) and Doc1/Apc10 bind to the C-terminal domain of the TPR-containing subunits Apc3 and Apc7 via the IR peptide tail sequence (7, 16, 19). It is unknown, however, how TPR-containing subunits form homo- and heterosubunit complexes, although studies have demonstrated that TPR-containing subunits self-associate in vivo and in vitro (15) and that they interact with other TPR-containing subunits (20).Apc7 is found only in vertebrate APC/C and is estimated to contain 9-15 TPR motifs, similar to other TPR-containing subunits (9). Apc7 is considered to be a molecular descendant of the same ancestral protein that gave rise to Apc3. Furthermore, the N-terminal domain of Apc7 has been reported to contain cell cycle-regulated phosphorylation sites (21), and the C-terminal TPR domain of Apc7 interacts with Cdh1 and Cdc20 (19). In Drosophila APC/C, the homolog of vertebrate Apc7 participates in synergistic genetic interactions with other TPR-containing subunits (22).The function of Apc7 within vertebrate APC/C, however, is poorly understood. Moreover, although the C-terminal regions of Apc3 and Apc7 include a tandem of nine TPR motifs, the N-terminal domains of human Apc3 and Apc7 share little homology with the canonical TPR sequence. Therefore, the N-terminal domain of human Apc7 is expected to have a significant function in vertebrate APC/C.In this study, we determined the crystal structure of the N-terminal fragment of human Apc7 (residues 1-147, denoted nApc7), and the homodimeric self-association of nApc7 structure led us to insights into mechanisms of vertebrate APC/C.  相似文献   

3.
The anaphase-promoting complex (APC/C) is a large ubiquitin-protein ligase which controls progression through anaphase by triggering the degradation of cell cycle regulators such as securin and B-type cyclins. The APC/C is an unusually complex ligase containing at least 10 different, evolutionarily conserved components. In contrast to APC/C's role in cell cycle regulation little is known about the functions of individual subunits and how they might interact with each other. Here, we have analyzed Swm1/Apc13, a small subunit recently identified in the budding yeast complex. Database searches revealed proteins related to Swm1/Apc13 in various organisms including humans. Both the human and the fission yeast homologues are associated with APC/C subunits, and they complement the phenotype of an SWM1 deletion mutant of budding yeast. Swm1/Apc13 promotes the stable association with the APC/C of the essential subunits Cdc16 and Cdc27. Accordingly, Swm1/Apc13 is required for ubiquitin ligase activity in vitro and for the timely execution of APC/C-dependent cell cycle events in vivo.  相似文献   

4.
The anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase responsible for controlling cell cycle transitions, is a multisubunit complex assembled from 13 different proteins. Numerous APC/C subunits incorporate multiple copies of the tetratricopeptide repeat (TPR). Here, we report the crystal structure of Schizosaccharomyces pombe Cut9 (Cdc16/Apc6) in complex with Hcn1 (Cdc26), showing that Cdc16/Cut9 is a contiguous TPR superhelix of 14 TPR units. A C-terminal block of TPR motifs interacts with Hcn1, whereas an N-terminal TPR block mediates Cdc16/Cut9 self-association through a homotypic interface. This dimer interface is structurally related to the N-terminal dimerization domain of Cdc27, demonstrating that both Cdc16/Cut9 and Cdc27 form homo-dimers through a conserved mechanism. The acetylated N-terminal Met residue of Hcn1 is enclosed within a chamber created from the Cut9 TPR superhelix. Thus, in complex with Cdc16/Cut9, the N-acetyl-Met residue of Hcn1, a putative degron for the Doa10 E3 ubiquitin ligase, is inaccessible for Doa10 recognition, protecting Hcn1/Cdc26 from ubiquitin-dependent degradation. This finding may provide a structural explanation for a mechanism to control the stoichiometry of proteins participating in multisubunit complexes.  相似文献   

5.
6.
The anaphase-promoting complex (APC) or cyclosome is a ubiquitin ligase that initiates anaphase and mitotic exit. APC activation is thought to depend on APC phosphorylation and Cdc20 binding. We have identified 43 phospho-sites on APC of which at least 34 are mitosis specific. Of these, 32 sites are clustered in parts of Apc1 and the tetratricopeptide repeat (TPR) subunits Cdc27, Cdc16, Cdc23 and Apc7. In vitro, at least 15 of the mitotic phospho-sites can be generated by cyclin-dependent kinase 1 (Cdk1), and 3 by Polo-like kinase 1 (Plk1). APC phosphorylation by Cdk1, but not by Plk1, is sufficient for increased Cdc20 binding and APC activation. Immunofluorescence microscopy using phospho-antibodies indicates that APC phosphorylation is initiated in prophase during nuclear uptake of cyclin B1. In prometaphase phospho-APC accumulates on centrosomes where cyclin B ubiquitination is initiated, appears throughout the cytosol and disappears during mitotic exit. Plk1 depletion neither prevents APC phosphorylation nor cyclin A destruction in vivo. These observations imply that APC activation is initiated by Cdk1 already in the nuclei of late prophase cells.  相似文献   

7.
The anaphase‐promoting complex/cyclosome (APC/C), a multi‐subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin‐dependent kinase 1 (Cdk1) promotes Cdc20 co‐activator loading in mitosis to form active APC/C‐Cdc20. However, detailed phospho‐regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo‐like kinase (Plx1) and PP2A‐B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1‐loop500) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1‐loop500 in a phosphorylation‐dependent manner and promotes the formation of APC/C‐Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A‐B56 is recruited to the Apc1‐loop500 and differentially promotes dissociation of Plx1 and PP2A‐B56 through dephosphorylation of Plx1‐binding sites. Stable Plx1 binding, which prevents PP2A‐B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1‐loop500 is controlled by distant Apc3‐loop phosphorylation. Our study suggests that phosphorylation‐dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.  相似文献   

8.
The anaphase-promoting complex (APC) is a multi-subunit E3 protein ubiquitin ligase that is responsible for the metaphase to anaphase transition and the exit from mitosis. One of the subunits of the APC that is required for its ubiquitination activity is Doc1/Apc10, a protein composed of a Doc1 homology domain that has been identified in a number of diverse putative E3 ubiquitin ligases. Here, we present the crystal structure of Saccharomyces cerevisiae Doc1/Apc10 at 2.2A resolution. The Doc1 homology domain forms a beta-sandwich structure that is related in architecture to the galactose-binding domain of galactose oxidase, the coagulation factor C2 domain and a domain of XRCC1. Residues that are invariant amongst Doc1/Apc10 sequences, including a temperature-sensitive mitotic arrest mutant, map to a beta-sheet region of the molecule, whose counterpart in galactose oxidase, the coagulation factor C2 domains and XRCC1, mediate bio-molecular interactions. This finding suggests the identification of the functionally important and conserved region of Doc1/Apc10 and, since invariant residues of Doc1/Apc10 colocalise with conserved residues of other Doc1 homology domains, we propose that the Doc1 homology domains perform common ubiquitination functions in the APC and other E3 ubiquitin ligases.  相似文献   

9.
The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase is tightly regulated to ensure programmed proteolysis in cells. The activity of the APC/C is positively controlled by cyclin-dependent kinase (CDK), but a second level of control must also exist because phosphorylation inactivates Cdc20, a mitotic APC/C co-activator. How Cdc20 is dephosphorylated specifically, when CDK is high, has remained unexplained. Here, we show that phosphatases are crucial to activate the APC/C. Cdc20 is phosphorylated at six conserved residues (S50/T64/T68/T79/S114/S165) by CDK in Xenopus egg extracts. When all the threonine residues are phosphorylated, Cdc20 binding to and activation of the APC/C are inhibited. Their dephosphorylation is regulated depending on the sites and protein phosphatase 2A, active in mitosis, is essential to dephosphorylate the threonine residues and activate the APC/C. Consistently, most of the Cdc20 bound to the APC/C in anaphase evades phosphorylation at T79. Furthermore, we show that the 'activation domain' of Cdc20 associates with the Apc6 and Apc8 core subunits. Our data suggest that dephosphorylation of Cdc20 is required for its loading and activation of the APC/C ubiquitin ligase.  相似文献   

10.
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that targets specific cell cycle-related proteins for degradation, regulating progression from metaphase to anaphase and exit from mitosis. The APC is regulated by binding of the coactivator proteins Cdc20p and Cdh1p, and by phosphorylation. We have developed a purification strategy that allowed us to purify the budding yeast APC to near homogeneity and identify two novel APC-associated proteins, Swm1p and Mnd2p. Using an in vitro ubiquitylation system and a native gel binding assay, we have characterized the properties of wild-type and mutant APC. We show that both the D and KEN boxes contribute to substrate recognition and that coactivator is required for substrate binding. APC lacking Apc9p or Doc1p/Apc10 have impaired E3 ligase activities. However, whereas Apc9p is required for structural stability and the incorporation of Cdc27p into the APC complex, Doc1p/Apc10 plays a specific role in substrate recognition by APC-coactivator complexes. These results imply that Doc1p/Apc10 may play a role to regulate the binding of specific substrates, similar to that of the coactivators.  相似文献   

11.
The mechanisms that control E2F-1 activity are complex. We previously showed that Chk1 and Chk2 are required for E2F1 stabilization and p73 target gene induction following DNA damage. To gain further insight into the processes regulating E2F1 protein stability, we focused our investigation on the mechanisms responsible for regulating E2F1 turnover. Here we show that E2F1 is a substrate of the anaphase promoting complex or cyclosome (APC/C), a ubiquitin ligase that plays an important role in cell cycle progression. Ectopic expression of the APC/C activators Cdh1 and Cdc20 reduced the levels of co-expressed E2F-1 protein. Co-expression of DP1 with E2F1 blocked APC/C-induced E2F1 degradation, suggesting that the E2F1/DP1 heterodimer is protected from APC/C regulation. Following Cdc20 knockdown, E2F1 levels increased and remained stable in extracts over a time course, indicating that APC/CCdc20 is a primary regulator of E2F1 stability in vivo. Moreover, cell synchronization experiments showed that siRNA directed against Cdc20 induced an accumulation of E2F1 protein in prometaphase cells. These data suggest that APC/CCdc20 specifically targets E2F1 for degradation in early mitosis and reveal a novel mechanism for limiting free E2F1 levels in cells, failure of which may compromise cell survival and/or homeostasis.  相似文献   

12.
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin–proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/CCdc20) and establishes a stable G1 phase (APC/CCdh1). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

13.
The spindle checkpoint arrests cells in metaphase until all chromosomes are properly attached to the chromosome segregation machinery. Thereafter, the anaphase promoting complex (APC/C) is activated and chromosome segregation can take place. Cells remain arrested in mitosis for hours in response to checkpoint activation, but not indefinitely. Eventually, they adapt to the checkpoint and proceed along the cell cycle. In yeast, adaptation requires the phosphorylation of APC/C. Here, we show that the protein phosphatase PP2ACdc55 dephosphorylates APC/C, thereby counteracting the activity of the mitotic kinase Cdc28. We also observe that the key regulator of Cdc28, the mitotic cyclin Clb2, increases before cells adapt and is then abruptly degraded at adaptation. Adaptation is highly asynchronous and takes place over a range of several hours. Our data suggest the presence of a double negative loop between PP2ACdc55 and APC/CCdc20 (i.e., a positive feedback loop) that controls APC/CCdc20 activity. The circuit could guarantee sustained APC/CCdc20 activity after Clb2 starts to be degraded.  相似文献   

14.
The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C). Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC) which binds and inhibits the APC/C early in mitosis. Mps1Mph1 kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1Mph1 kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors in vitro, demonstrating that Mad3p modification can directly influence Cdc20Slp1-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1Mph1 kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests.  相似文献   

15.
Cell cycle regulated protein ubiquitination and degradation within subcellular domains may be essential for the normal progression of mitosis. Cdc27 is a conserved component of an essential M-phase ubiquitin-protein ligase called the anaphase-promoting complex/cyclosome. We examined the subcellular distribution of Cdc27 in greater detail in mammalian cells and found Cdc27 concentrated at spindle poles and on spindle microtubules as previously described, but also found Cdc27 at kinetochores and along chromosome arms. This localization was not dependent on intact microtubules. While the great majority of Cdc27 protein in M phase cells is highly phosphorylated, only the dephosphorylated form of Cdc27 was found associated with isolated chromosomes. Kinases that also associate with isolated chromosomes catalyzed the in vitro phosphorylation of the chromosome-associated Cdc27. Microinjection of anti-Cdc27 antibody into cells causes arrest at metaphase. Microinjection of cells with anti-Mad2 antibody normally induces premature anaphase onset resulting in catastrophic nondisjunction of the chromosomes. However, coinjection of anti-Cdc27 antibody with anti-Mad2 antibody resulted in metaphase arrest. The association of dephosphorylated APC/C components with mitotic chromosomes suggests mechanisms by which the spindle checkpoint may regulate APC/C activity at mitosis.

Key Words:

Centromere, Ubiquitin, Checkpoint, Cell cycle, Proteasome  相似文献   

16.
SIC1 is a non-essential gene encoding a CDK inhibitor of Cdc28-Clb kinase activity. Sic1p is involved in both mitotic exit and the timing of DNA synthesis. To identify other genes involved in controlling Clb-kinase activity, we have undertaken a genetic screen for mutations which render SIC1 essential. Here we describe a gene we have identified by this means, RSI1/APC2. Temperature-sensitive rsi1/apc2 mutants arrest in metaphase and are unable to degrade Clb2p, suggesting that Rsi1p/Apc2p is associated with the anaphase promoting complex (APC). This is an E3 ubiquitin-ligase that controls anaphase initiation through degradation of Pds1p and mitotic exit via degradation of Clb cyclins. Indeed, the anaphase block in rsi1/apc2 temperature-sensitive mutants is overcome by removal of PDS1, consistent with Rsi1p/Apc2p being part of the APC. In addition, like our rsi1/apc2 mutations, cdc23-1, encoding a known APC subunit, is also lethal with sic1Delta. Thus SIC1 clearly becomes essential when APC function is compromised. Finally, we find that Rsi1p/Apc2p co-immunoprecipitates with Cdc23p. Taken together, our results suggest that RSI1/APC2 is a subunit of APC.  相似文献   

17.
One of the key cell cycle regulators, the anaphase promoting complex (APC) or cyclosome, plays a dual role during mitotic exit. By destroying anaphase inhibitors it promotes sister chromatid separation, and by destroying B-type cyclins it promotes cytokinesis and removes the replication block. Under unfavorable growth conditions, most eukaryotic cells, including the fission yeastSchizosaccharomyces pombe exit mitosis normally but are arrested in G1 and do not enter the S phase. InS. pombe, mutations in two APC/cyclosome subunits,nuc2-663 andapc10 ts, cause mitotic defects at 36°C, and under nitrogen starvation at 25°C they lead to inability of stopping in G1 and hence to sterility. To gain more insight into the mechanisms regulating APC/cyclosome activity during normal growth and under nitrogen starvation, we screened a genomic library to identify high-copy suppressors of the temperature sensitivity ofnuc2-663. Here we show that overexpression ofapc10 + allows this strain to grow at 32°C and rescues it from sensitivity to the protease inhibitor N-tosyl-L-phenylalanine chloromethyl ketone at 25°C. These observations are consistent with the proposed role for Apc10p as a positive regulator of the APC/cyclosome. However,apc10 + does not suppress the sterility ofnuc2-663 mutant cells, suggesting that it plays a specific role in APC regulation (e.g., in substrate recognition) rather than in general APC activation.  相似文献   

18.
Accurate segregation of sister chromatids during mitosis is necessary to avoid the aneuploidy found in many cancers. The spindle checkpoint, which monitors the metaphase to anaphase transition, has been shown to be defective in cancers with chromosomal instability. This checkpoint regulates the anaphase-promoting complex or cyclosome (APC/C), a cell cycle ubiquitin ligase regulating among other things sister chromatid separation. We have previously investigated the mouse Apc1 protein (previously also called Tsg24), the largest subunit of the APC/C. We have now sequenced a full-length human APC1 cDNA, mapped its chromosomal location, and analysed its intron-exon boundaries. We have also investigated the RNA and protein expression of the Apc1 and other APC/C components in normal and cancer cells and the relative occurrence of expressed sequence tags (ESTs) representing APC subunits from different tissues. The different APC/C subunits are expressed in most tissues and cell types at fairly constant levels relative to each other, suggesting that they perform their functions as part of a complex. A difference from this pattern is however seen for the APC6, which in some cases is more strongly expressed, suggesting a special function for this protein in certain tissues and cell types.  相似文献   

19.
20.
The mechanisms that control E2F-1 activity are complex. We previously showed that Chk1 and Chk2 are required for E2F1 stabilization and p73 target gene induction following DNA damage. To gain further insight into the processes regulating E2F1 protein stability, we focused our investigation on the mechanisms responsible for regulating E2F1 turnover. Here we show that E2F1 is a substrate of the anaphase-promoting complex or cyclosome (APC/C), a ubiquitin ligase that plays an important role in cell cycle progression. Ectopic expression of the APC/C activators Cdh1 and Cdc20 reduced the levels of co-expressed E2F-1 protein. Co-expression of DP1 with E2F1 blocked APC/C-induced E2F1 degradation, suggesting that the E2F1/DP1 heterodimer is protected from APC/C regulation. Following Cdc20 knockdown, E2F1 levels increased and remained stable in extracts over a time course, indicating that APC/CCdc20 is a primary regulator of E2F1 stability in vivo. Moreover, cell synchronization experiments showed that siRNA directed against Cdc20 induced an accumulation of E2F1 protein in prometaphase cells. These data suggest that APC/CCdc20 specifically targets E2F1 for degradation in early mitosis and reveal a novel mechanism for limiting free E2F1 levels in cells, failure of which may compromise cell survival and/or homeostasis.Key words: cell cycle, ubiquitination, E2F1, APC/C, Cdc20, Cdh1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号