首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the FAD-dependent chondrochloren halogenase CndH has been established at 2.1 Å resolution. The enzyme contains the characteristic FAD-binding scaffold of the glutathione reductase superfamily. Except for its C-terminal domain, the chainfold of CndH is virtually identical with those of FAD-dependent aromatic hydroxylases. When compared to the structurally known FAD-dependent halogenases PrnA and RebH, CndH lacks a 45 residue segment near position 100 and deviates in the C-terminal domain. Both variations are near the active center and appear to reflect substrate differences. Whereas PrnA and RebH modify free tryptophan, CndH halogenates the tyrosyl group of a chondrochloren precursor that is most likely bound to a carrier protein. In contrast to PrnA and RebH, which enclose their small substrate completely, CndH has a large non-polar surface patch that may accommodate the putative carrier. Apart from the substrate binding site, the active center of CndH corresponds to those of PrnA and RebH. At the halogenation site, CndH has the characteristic lysine (Lys76) but lacks the required base Glu346 (PrnA). This base may be supplied by a residue of its C-terminal domain or by the carrier. These differences were corroborated by an overall sequence comparison between the known FAD-dependent halogenases, which revealed a split into a PrnA-RebH group and a CndH group. The two functionally established members of the CndH group use carrier-bound substrates, whereas three members of PrnA-RebH group are known to accept a free amino acid. Given the structural and functional distinction, we classify CndH as a new variant B of the FAD-dependent halogenases, adding a new feature to the structurally established variant A enzymes PrnA and RebH.  相似文献   

2.
Flavin‐dependent halogenases require reduced flavin adenine dinucleotide (FADH2), O2, and halide salts to halogenate their substrates. We describe the crystal structures of the tryptophan 6‐halogenase Thal in complex with FAD or with both tryptophan and FAD. If tryptophan and FAD were soaked simultaneously, both ligands showed impaired binding and in some cases only the adenosine monophosphate or the adenosine moiety of FAD was resolved, suggesting that tryptophan binding increases the mobility mainly of the flavin mononucleotide moiety. This confirms a negative cooperativity between the binding of substrate and cofactor that was previously described for other tryptophan halogenases. Binding of substrate to tryptophan halogenases reduces the affinity for the oxidized cofactor FAD presumably to facilitate the regeneration of FADH2 by flavin reductases.  相似文献   

3.
The flavin-dependent halogenase RebH catalyzes the formation of 7-chlorotryptophan as the initial step in the biosynthesis of antitumor agent rebeccamycin. The reaction of FADH2, Cl-, and O2 in the active site generates the powerful oxidant HOCl, which was presumed to carry out the chlorination reaction. Herein, we demonstrate the formation of a long-lived chlorinating intermediate (t1/2 = 63 h at 4 degrees C) when RebH, FADH2, Cl-, and O2 react in the absence of substrate tryptophan. This intermediate remained on the enzyme after removal of FAD and transferred chlorine to tryptophan with kinetically competent rates. The identity of this intermediate is suggested by the X-ray crystal structure of RebH, which revealed an active site Lys79 located in a central position between flavin and tryptophan binding sites and just 4.1 A above C7 of tryptophan. The chlorinating species is proposed to be a Lys-epsilonNH-Cl (lysine chloramine) from reaction of enzyme-generated HOCl with the active site Lys79. This covalent enzyme chloramine likely plays a key role in directing regiospecific chlorination of substrate in this important class of biosynthetic enzymes.  相似文献   

4.
Sulfide:quinone oxidoreductase from the acidophilic and chemolithotrophic bacterium Acidithiobacillus ferrooxidans was expressed in Escherichia coli and crystallized, and its X-ray molecular structure was determined to 2.3 Å resolution for native unbound protein in space group P42212 . The decylubiquinone-bound structure and the Cys160Ala variant structure were subsequently determined to 2.3 Å and 2.05 Å resolutions, respectively, in space group P6222  . The enzymatic reaction catalyzed by sulfide:quinone oxidoreductase includes the oxidation of sulfide compounds H2S, HS, and S2− to soluble polysulfide chains or to elemental sulfur in the form of octasulfur rings; these oxidations are coupled to the reduction of ubiquinone or menaquinone. The enzyme comprises two tandem Rossmann fold domains and a flexible C-terminal domain encompassing two amphipathic helices that are thought to provide for membrane anchoring. The second amphipathic helix unwinds and changes its orientation in the hexagonal crystal form. The protein forms a dimer that could be inserted into the membrane to a depth of approximately 20 Å. It has an endogenous flavin adenine dinucleotide (FAD) cofactor that is noncovalently bound in the N-terminal domain. Several wide channels connect the FAD cofactor to the exterior of the protein molecule; some of the channels would provide access to the membrane. The ubiquinone molecule is bound in one of these channels; its benzoquinone ring is stacked between the aromatic rings of two conserved Phe residues, and it closely approaches the isoalloxazine moiety of the FAD cofactor. Two active-site cysteine residues situated on the re side of the FAD cofactor form a branched polysulfide bridge. Cys356 disulfide acts as a nucleophile that attacks the C4A atom of the FAD cofactor in electron transfer reaction. The third essential cysteine Cys128 is not modified in these structures; its role is likely confined to the release of the polysulfur product.  相似文献   

5.
The regioselectively controlled introduction of chlorine into organic molecules is an important biological and chemical process. This importance derives from the observation that many pharmaceutically active natural products contain a chlorine atom. Flavin-dependent halogenases are one of the principal enzyme families responsible for regioselective halogenation of natural products. Structural studies of two flavin-dependent tryptophan 7-halogenases (PrnA and RebH) have generated important insights into the chemical mechanism of halogenation by this enzyme family. These proteins comprise two modules: a flavin adenine dinucleotide (FAD)-binding module and a tryptophan-binding module. Although the 7-halogenase studies advance a hypothesis for regioselectivity, this has never been experimentally demonstrated. PyrH is a tryptophan 5-halogenase that catalyzes halogenation on tryptophan C5 position. We report the crystal structure of a tryptophan 5-halogenase (PyrH) bound to tryptophan and FAD. The FAD-binding module is essentially unchanged relative to PrnA (and RebH), and PyrH would appear to generate the same reactive species from Cl, O2, and 1,5-dihydroflavin adenine dinucleotide. We report additional mutagenesis data that extend our mechanistic understanding of this process, in particular highlighting a strap region that regulates FAD binding, and may allow communication between the two modules. PyrH has a significantly different tryptophan-binding module. The data show that PyrH binds tryptophan and presents the C5 atom to the reactive chlorinating species, shielding other potential reactive sites. We have mutated residues identified by structural analysis as recognizing the tryptophan in order to confirm their role. This work establishes the method by which flavin-dependent tryptophan halogenases regioselectively control chlorine addition to tryptophan. This method would seem to be general across the superfamily.  相似文献   

6.
Flavin-dependent halogenases involved in secondary metabolism in bacteria   总被引:2,自引:0,他引:2  
The understanding of biological halogenation has increased during the last few years. While haloperoxidases were the only halogenating enzymes known until 1997, it is now clear that haloperoxidases are hardly, if at all, involved in biosynthesis of more complex halogenated compounds in microorganisms. A novel type of halogenating enzymes, flavin-dependent halogenases, has been identified as a major player in the introduction of chloride and bromide into activated organic molecules. Flavin-dependent halogenases require the activity of a flavin reductase for the production of reduced flavin, required by the actual halogenase. A number of flavin-dependent tryptophan halogenases have been investigated in some detail, and the first three-dimensional structure of a member of this enzyme subfamily, tryptophan 7-halogenase, has been elucidated. This structure suggests a mechanism involving the formation of hypohalous acid, which is used inside the enzyme for regioselective halogenation of the respective substrate. The introduction of halogen atoms into non-activated alkyl groups is catalysed by non-heme FeII α-ketoglutarate- and O2-dependent halogenases. Examples for the use of flavin-dependent halogenases for the formation of novel halogenated compounds in in vitro and in vivo reactions promise a bright future for the application of biological halogenation reactions.  相似文献   

7.
卤化物是通过卤化酶催化卤族元素在有机化合物上特定位置发生取代形成的一类化合物,具有独特的生理生化作用。黄素依赖型卤化酶具有良好的区域选择性,虽然有相似的黄素分子的结合位点,但在底物结合方面略有不同,对其结构和合成途径及结合蛋白质工程的随机诱变和定向改造的研究在工业应用中至关重要。讨论了具有高区域选择性的黄素依赖型卤化酶的结构特点及工程改造,以及经过工程改造后黄素依赖型卤化酶在工业生产中的应用。  相似文献   

8.
Yeh E  Cole LJ  Barr EW  Bollinger JM  Ballou DP  Walsh CT 《Biochemistry》2006,45(25):7904-7912
The flavin-dependent halogenase RebH catalyzes chlorination at the C7 position of tryptophan as the initial step in the biosynthesis of the chemotherapeutic agent rebeccamycin. The reaction requires reduced FADH(2) (provided by a partner flavin reductase), chloride ion, and oxygen as cosubstrates. Given the similarity of its sequence to those of flavoprotein monooxygenases and their common cosubstrate requirements, the reaction of FADH(2) and O(2) in the halogenase active site was presumed to form the typical FAD(C4a)-OOH intermediate observed in monooxygenase reactions. By using stopped-flow spectroscopy, formation of a FAD(C4a)-OOH intermediate was detected during the RebH reaction. This intermediate decayed to yield a FAD(C4a)-OH intermediate. The order of addition of FADH(2) and O(2) was critical for accumulation of the FAD(C4a)-OOH intermediate and for subsequent product formation, indicating that conformational dynamics may be important for protection of labile intermediates formed during the reaction. Formation of flavin intermediates did not require tryptophan, nor were their rates of formation affected by the presence of tryptophan, suggesting that tryptophan likely does not react directly with any flavin intermediates. Furthermore, although final oxidation to FAD occurred with a rate constant of 0.12 s(-)(1), quenched-flow kinetic data showed that the rate constant for 7-chlorotryptophan formation was 0.05 s(-)(1) at 25 degrees C. The kinetic analysis establishes that substrate chlorination occurs after completion of flavin redox reactions. These findings are consistent with a mechanism whereby hypochlorite is generated in the RebH active site from the reaction of FADH(2), chloride ion, and O(2).  相似文献   

9.
Rdc2 is the first flavin-dependent halogenase identified from fungi. Based on the reported structure of the bacterial halogenase CmlS, we have built a homology model for Rdc2. The model suggests an open substrate binding site that is capable of binding the natural substrate, monocillin II, and possibly other molecules such as 4-hydroxyisoquinoline (1) and 6-hydroxyisoquinoline (2). In vitro and in vivo halogenation experiments confirmed that 1 and 2 can be halogenated at the position ortho to the hydroxyl group, leading to the synthesis of the chlorinated isoquinolines 1a and 2a, respectively, which further expands the spectrum of identified substrates of Rdc2. This work revealed that Rdc2 is a useful biocatalyst for the synthesis of various halogenated compounds.  相似文献   

10.
The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 Å resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules—a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity—that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 Å away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme.  相似文献   

11.
Tn916-like conjugative transposons carrying antibiotic resistance genes are found in a diverse range of bacteria. Orf14 within the conjugation module encodes a bifunctional cell wall hydrolase CwlT that consists of an N-terminal bacterial lysozyme domain (N-acetylmuramidase, bLysG) and a C-terminal NlpC/P60 domain (γ-d-glutamyl-l-diamino acid endopeptidase) and is expected to play an important role in the spread of the transposons. We determined the crystal structures of CwlT from two pathogens, Staphylococcus aureus Mu50 (SaCwlT) and Clostridium difficile 630 (CdCwlT). These structures reveal that NlpC/P60 and LysG domains are compact and conserved modules, connected by a short flexible linker. The LysG domain represents a novel family of widely distributed bacterial lysozymes. The overall structure and the active site of bLysG bear significant similarity to other members of the glycoside hydrolase family 23 (GH23), such as the g-type lysozyme (LysG) and Escherichia coli lytic transglycosylase MltE. The active site of bLysG contains a unique structural and sequence signature (DxxQSSES + S) that is important for coordinating a catalytic water. Molecular modeling suggests that the bLysG domain may recognize glycan in a similar manner to MltE. The C-terminal NlpC/P60 domain contains a conserved active site (Cys-His-His-Tyr) that appears to be specific to murein tetrapeptide. Access to the active site is likely regulated by isomerism of a side chain atop the catalytic cysteine, allowing substrate entry or product release (open state), or catalysis (closed state).  相似文献   

12.
To study the role of the mobile C-terminal extension present in bacterial class of plant type NADP(H):ferredoxin reductases during catalysis, we generated a series of mutants of the Rhodobacter capsulatus enzyme (RcFPR). Deletion of the six C-terminal amino acids beyond alanine 266 was combined with the replacement A266Y, emulating the structure present in plastidic versions of this flavoenzyme. Analysis of absorbance and fluorescence spectra suggests that deletion does not modify the general geometry of FAD itself, but increases exposure of the flavin to the solvent, prevents a productive geometry of FAD:NADP(H) complex and decreases the protein thermal stability. Although the replacement A266Y partially coats the isoalloxazine from solvent and slightly restores protein stability, this single change does not allow formation of active charge-transfer complexes commonly present in the wild-type FPR, probably due to restraints of C-terminus pliability. A proton exchange process is deduced from ITC measurements during coenzyme binding. All studied RcFPR variants display higher affinity for NADP+ than wild-type, evidencing the contribution of the C-terminus in tempering a non-productive strong (rigid) interaction with the coenzyme. The decreased catalytic rate parameters confirm that the hydride transfer from NADPH to the flavin ring is considerably hampered in the mutants. Although the involvement of the C-terminal extension from bacterial FPRs in stabilizing overall folding and bent-FAD geometry has been stated, the most relevant contributions to catalysis are modulation of coenzyme entrance and affinity, promotion of the optimal geometry of an active complex and supply of a proton acceptor acting during coenzyme binding.  相似文献   

13.
In the biosynthesis of several anthracyclines, aromatic polyketides produced by many Streptomyces species, the aglycone core is modified by a specific flavin adenine dinucleotide (FAD)- and NAD(P)H-dependent aklavinone-11-hydroxylase. Here, we report the crystal structure of a ternary complex of this enzyme from Streptomyces purpurascens, RdmE, with FAD and the substrate aklavinone. The enzyme is built up of three domains, a FAD-binding domain, a domain involved in substrate binding, and a C-terminal thioredoxin-like domain of unknown function. RdmE exhibits structural similarity to aromatic hydroxylases from the p-hydroxybenzoate hydroxylase family, but unlike most other related enzymes, RdmE is a monomer. The substrate is bound in a hydrophobic pocket in the interior of the enzyme, and access to this pocket is provided through a different route than for the isoalloxazine ring of FAD—the backside of the ligand binding cleft. The architecture of the substrate binding pocket and the observed enzyme-aklavinone interactions provide a structural explanation for the specificity of the enzyme for non-glycosylated substrates with C9-R stereochemistry. The isoalloxazine ring of the flavin cofactor is bound in the “out” conformation but can be modeled in the “in” conformation without invoking large conformational changes of the enzyme. This model places the flavin ring in a position suitable for catalysis, almost perpendicular to the tetracyclic ring system of the substrate and with a distance of the C4a carbon atom of the isoalloxazine ring to the C-11 carbon atom of the substrate of 4.8 Å. The structure suggested that a Tyr224-Arg373 pair might be involved in proton abstraction at the C-6 hydroxyl group, thereby increasing the nucleophilicity of the aromatic ring system and facilitating electrophilic attack by the perhydroxy-flavin intermediate. Replacement of Tyr224 by phenylalanine results in inactive enzyme, whereas mutants at position Arg373 retain catalytic activity close to wild-type level. These data establish an essential role of residue Tyr224 in catalysis, possibly in aligning the substrate in a position suitable for catalysis.  相似文献   

14.
The crystal structure of geranylgeranyl reductase (GGR) from Sulfolobus acidocaldarius was determined in order to elucidate the molecular mechanism of the catalytic reaction. The enzyme is a flavoprotein and is involved in saturation of the double bonds on the isoprenoid moiety of archaeal membranes. The structure determined in this study belongs to the p-hydroxybenzoate hydroxylase family in the glutathione reductase superfamily. GGR functions as a monomer and is divided into the FAD-binding, catalytic and C-terminal domains. The catalytic domain has a large cavity surrounded by a characteristic YxWxFPx7-8GxG motif and by the isoalloxazine ring of an FAD molecule. The cavity holds a lipid molecule, which is probably derived from Escherichia coli cells used for over-expression. One of the two forms of the structure clarifies the presence of an anion pocket holding a pyrophosphate molecule, which might anchor the phosphate head of the natural ligands. Mutational analysis supports the suggestion that the three aromatic residues of the YxWxFPx7-8GxG motif hold the ligand in the appropriate position for reduction. Cys47, which is widely conserved in GGRs, is located at the si-side of the isoalloxazine ring of FAD and is shown by mutational analysis to be involved in catalysis. The catalytic cycle, including the FAD reducing factor binding site, is proposed on the basis of the detailed analysis of the structure.  相似文献   

15.
Archaeal membrane lipids consist of branched, saturated hydrocarbons distinct from those found in bacteria and eukaryotes. Digeranylgeranylglycerophospholipid reductase (DGGR) catalyzes the hydrogenation process that converts unsaturated 2,3-di-O-geranylgeranylglyceryl phosphate to saturated 2,3-di-O-phytanylglyceryl phosphate as a critical step in the biosynthesis of archaeal membrane lipids. The saturation of hydrocarbon chains confers the ability to resist hydrolysis and oxidation and helps archaea withstand extreme conditions. DGGR is a member of the geranylgeranyl reductase family that is also widely distributed in bacteria and plants, where the family members are involved in the biosynthesis of photosynthetic pigments. We have determined the crystal structure of DGGR from the thermophilic heterotrophic archaea Thermoplasma acidophilum at 1.6 Å resolution, in complex with flavin adenine dinucleotide (FAD) and a bacterial lipid. The DGGR structure can be assigned to the well-studied, p-hydroxybenzoate hydroxylase (PHBH) SCOP superfamily of flavoproteins that include many aromatic hydroxylases and other enzymes with diverse functions. In the DGGR complex, FAD adopts the IN conformation (closed) previously observed in other PHBH flavoproteins. DGGR contains a large substrate-binding site that extends across the entire ligand-binding domain. Electron density corresponding to a bacterial lipid was found within this cavity. The cavity consists of a large opening that tapers down to two, narrow, curved tunnels that closely mimic the shape of the preferred substrate. We identified a sequence motif, PxxYxWxFP, that defines a specificity pocket in the enzyme and precisely aligns the double bond of the geranyl group with respect to the FAD cofactor, thus providing a structural basis for the substrate specificity of geranylgeranyl reductases. DGGR is likely to share a common mechanism with other PHBH enzymes in which FAD switches between two conformations that correspond to the reductive and oxidative half cycles. The structure provides evidence that substrate binding likely involves conformational changes, which are coupled to the two conformational states of the FAD.  相似文献   

16.
The fumarate reductases from S. frigidimarina NCIMB400 and S. oneidensis MR-1 are soluble and monomeric enzymes located in the periplasm of these bacteria. These proteins display two redox active domains, one containing four c-type hemes and another containing FAD at the catalytic site. This arrangement of single-electron redox co-factors leading to multiple-electron active sites is widespread in respiratory enzymes. To investigate the properties that allow a chain of single-electron co-factors to sustain the activity of a multi-electron catalytic site, redox titrations followed by NMR and visible spectroscopies were applied to determine the microscopic thermodynamic parameters of the hemes. The results show that the redox behaviour of these fumarate reductases is similar and dominated by a strong interaction between hemes II and III. This interaction facilitates a sequential transfer of two electrons from the heme domain to FAD via heme IV.  相似文献   

17.
Aspergillus fumigatus siderophore A (SidA) is an FAD-containing monooxygenase that catalyzes the hydroxylation of ornithine in the biosynthesis of hydroxamate siderophores that are essential for virulence (e.g. ferricrocin or N'',N",N''''''-triacetylfusarinine C)1. The reaction catalyzed by SidA can be divided into reductive and oxidative half-reactions (Scheme 1). In the reductive half-reaction, the oxidized FAD bound to Af SidA, is reduced by NADPH2,3. In the oxidative half-reaction, the reduced cofactor reacts with molecular oxygen to form a C4a-hydroperoxyflavin intermediate, which transfers an oxygen atom to ornithine. Here, we describe a procedure to measure the rates and detect the different spectral forms of SidA using a stopped-flow instrument installed in an anaerobic glove box. In the stopped-flow instrument, small volumes of reactants are rapidly mixed, and after the flow is stopped by the stop syringe (Figure 1), the spectral changes of the solution placed in the observation cell are recorded over time. In the first part of the experiment, we show how we can use the stopped-flow instrument in single mode, where the anaerobic reduction of the flavin in Af SidA by NADPH is directly measured. We then use double mixing settings where Af SidA is first anaerobically reduced by NADPH for a designated period of time in an aging loop, and then reacted with molecular oxygen in the observation cell (Figure 1). In order to perform this experiment, anaerobic buffers are necessary because when only the reductive half-reaction is monitored, any oxygen in the solutions will react with the reduced flavin cofactor and form a C4a-hydroperoxyflavin intermediate that will ultimately decay back into the oxidized flavin. This would not allow the user to accurately measure rates of reduction since there would be complete turnover of the enzyme. When the oxidative half-reaction is being studied the enzyme must be reduced in the absence of oxygen so that just the steps between reduction and oxidation are observed. One of the buffers used in this experiment is oxygen saturated so that we can study the oxidative half-reaction at higher concentrations of oxygen. These are often the procedures carried out when studying either the reductive or oxidative half-reactions with flavin-containing monooxygenases. The time scale of the pre-steady-state experiments performed with the stopped-flow is milliseconds to seconds, which allow the determination of intrinsic rate constants and the detection and identification of intermediates in the reaction4. The procedures described here can be applied to other flavin-dependent monooxygenases.5,6  相似文献   

18.
The enzyme 2,6-dihydroxypyridine-3-hydroxylase catalyzes the sixth step of the nicotine degradation pathway in Arthrobacter nicotinovorans. The enzyme was produced in Escherichia coli, purified and crystallized. The crystal structure was solved at 2.6 Å resolution, revealing a significant structural relationship with the family of FAD-dependent aromatic hydroxylases, but essentially no sequence homology. The structure was aligned with those of the established family members, showing that the FAD molecules are bound at virtually identical locations. The reported enzyme is a dimer like most other family members, but its dimerization contact differs from the others. The binding position of NAD(P)H to this enzyme family is not clear. Since the reported enzyme accepts only NADH for flavin reduction in contrast to the other established members using NADPH, we searched through the structural alignment and found an indication for the position of the 2′-phosphate of NADPH that is in general agreement with mutational studies on a related enzyme, but contradicts a crystal soaking experiment. Using a bound glycerol molecule and the known substrate positions of three related enzymes as a guide, the substrate 2,6-dihydroxypyridine was placed into the active center. The access to the binding site is discussed. The new active center geometry introduces constraints that render some reaction scenarios more likely than others. It suggests that flavin is reduced at its out-position and then drawn into its in-position, where it binds molecular oxygen. The geometry is consistent with the proposal that peroxy-flavin is protonated by the solvent to yield the electrophilic hydroperoxy-flavin. The substrate is activated by two buried histidines but there is no appropriate base to store the surplus proton of the hydroxylated carbon atom. The implications of this problem are discussed.  相似文献   

19.
We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p-cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein 'pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands.  相似文献   

20.
In the brain, the extensively studied FAD-dependent enzyme D-amino acid oxidase (DAO) degrades the gliotransmitter D-serine, a potent activator of N-methyl-D-aspartate type glutamate receptors, and evidence suggests that DAO, together with its activator G72 protein, may play a key role in the pathophysiology of schizophrenia. Indeed, its potential clinical importance highlights the need for structural and functional analyses of human DAO. We recently succeeded in purifying human DAO, and found that it weakly binds FAD and shows a significant slower rate of flavin reduction compared with porcine DAO. However, the molecular basis for the different kinetic features remains unclear because the active site of human DAO was considered to be virtually identical to that of porcine DAO, as would be expected from the 85% sequence identity. To address this issue, we determined the crystal structure of human DAO in complex with a competitive inhibitor benzoate, at a resolution of 2.5 Angstrom. The overall dimeric structure of human DAO is similar to porcine DAO, and the catalytic residues are fully conserved at the re-face of the flavin ring. However, at the si-face of the flavin ring, despite the strict sequence identity, a hydrophobic stretch (residues 47-51, VAAGL) exists in a significantly different conformation compared with both of the independently determined porcine DAO-benzoate structures. This suggests that a context-dependent conformational variability of the hydrophobic stretch accounts for the low affinity for FAD as well as the slower rate of flavin reduction, thus highlighting the unique features of the human enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号