首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection by tailed dsDNA phages is initiated by release of the viral DNA from the capsid and its polarized injection into the host. The driving force for the genome transport remains poorly defined. Among many hypothesis [1], it has been proposed that the internal pressure built up during packaging of the DNA in the capsid is responsible for its injection [2-4]. Whether the energy stored during packaging is sufficient to cause full DNA ejection or only to initiate the process was tested on phage T5 whose DNA (121,400 bp) can be released in vitro by mere interaction of the phage with its E. coli membrane receptor FhuA [5-7]. We present a fluorescence microscopy study investigating in real time the dynamics of DNA ejection from single T5 phages adsorbed onto a microfluidic cell. The ejected DNA was fluorescently stained, and its length was measured at different stages of the ejection after being stretched in a hydrodynamic flow. We conclude that DNA release is not an all-or-none process but occurs in a stepwise fashion and at a rate reaching 75,000 bp/sec. The relevance of this stepwise ejection to the in vivo DNA transfer is discussed.  相似文献   

2.
Tailed bacteriophage particles carry DNA highly pressurized inside the capsid. Challenge with their receptor promotes release of viral DNA. We show that addition of the osmolyte polyethylene glycol (PEG) has two distinct effects in bacteriophage SPP1 DNA ejection. One effect is to inhibit the trigger for DNA ejection. The other effect is to exert an osmotic pressure that controls the extent of DNA released in phages that initiate ejection. We carried out independent measurements of each effect, which is an essential requirement for their quantitative study. The fraction of phages that do not eject increased linearly with the external osmotic pressure. In the remaining phage particles ejection stopped after a defined amount of DNA was reached inside the capsid. Direct measurement of the size of non-ejected DNA by gel electrophoresis at different PEG concentrations in the latter sub-population allowed determination of the external osmotic pressure that balances the force powering DNA exit (47 atm for SPP1 wild-type). DNA exit stops when the ejection force mainly due to repulsion between DNA strands inside the SPP1 capsid equalizes the force resisting DNA insertion into the PEG solution. Considering the turgor pressure in the Bacillus subtilis cytoplasm the energy stored in the tight phage DNA packing is only sufficient to power entry of the first 17% of the SPP1 chromosome into the cell, the remaining 83% requiring application of additional force for internalization.  相似文献   

3.
During entry, herpes simplex virus type 1 (HSV-1) releases its capsid and the tegument proteins into the cytosol of a host cell by fusing with the plasma membrane. The capsid is then transported to the nucleus, where it docks at the nuclear pore complexes (NPCs), and the viral genome is rapidly released into the nucleoplasm. In this study, capsid association with NPCs and uncoating of the viral DNA were reconstituted in vitro. Isolated capsids prepared from virus were incubated with cytosol and purified nuclei. They were found to bind to the nuclear pores. Binding could be inhibited by pretreating the nuclei with wheat germ agglutinin, anti-NPC antibodies, or antibodies against importin beta. Furthermore, in the absence of cytosol, purified importin beta was both sufficient and necessary to support efficient capsid binding to nuclei. Up to 60 to 70% of capsids interacting with rat liver nuclei in vitro released their DNA if cytosol and metabolic energy were supplied. Interaction of the capsid with the nuclear pore thus seemed to trigger the release of the viral genome, implying that components of the NPC play an active role in the nuclear events during HSV-1 entry into host cells.  相似文献   

4.
The conjunction of insights from structural biology, solution biochemistry, genetics, and single-molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this article we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure.  相似文献   

5.
Double-stranded DNA bacteriophage genomes are densely packaged into capsids until the ejection is triggered upon interaction of the tail with the bacterial receptor. Using cryo-electron microscopy, we describe the organization of the genome in the full capsid of T5 and show how it undergoes a series of phase transitions upon progressive ejection when the encapsidated DNA length decreases. Monodomains of hexagonally crystallized DNA segments initially form a three-dimensional lattice of defects. The structure turns liquid crystalline (two-dimensional hexagonal and then cholesteric) and finally isotropic. These structures suggest a mechanism in which defects of the full capsid would initiate the ejection and introduce the necessary fluidity to relax the constrained mosaic crystal to let the genome start flowing out of the capsid.  相似文献   

6.
The ejection of DNA from a bacterial virus (i.e., phage) into its host cell is a biologically important example of the translocation of a macromolecular chain along its length through a membrane. The simplest mechanism for this motion is diffusion, but in the case of phage ejection a significant driving force derives from the high degree of stress to which the DNA is subjected in the viral capsid. The translocation is further sped up by the ratcheting and entropic forces associated with proteins that bind to the viral DNA in the host cell cytoplasm. We formulate a generalized diffusion equation that includes these various pushing and pulling effects and make estimates of the corresponding speedups in the overall translocation process. Stress in the capsid is the dominant factor throughout early ejection, with the pull due to binding particles taking over at later stages. Confinement effects are also investigated, in the case where the phage injects its DNA into a volume comparable to the capsid size. Our results suggest a series of in vitro experiments involving the ejection of DNA into vesicles filled with varying amounts of binding proteins from phage whose state of stress is controlled by ambient salt conditions or by tuning genome length.  相似文献   

7.
Recent in vitro experiments have shown that DNA ejection from bacteriophage can be partially stopped by surrounding osmotic pressure when ejected DNA is digested by DNase I in the course of ejection. In this work, we argue by a combination of experimental techniques (osmotic suppression without DNase I monitored by UV absorbance, pulse-field electrophoresis, and cryo-transmission electron microscopy visualization) and simple scaling modeling that intact genome (i.e., undigested) ejection in a crowded environment is, on the contrary, enhanced or eventually complete with the help of a pulling force resulting from DNA condensation induced by the osmotic stress itself. This demonstrates that in vivo, the osmotically stressed cell cytoplasm will promote phage DNA ejection rather than resist it. The further addition of DNA-binding proteins under crowding conditions is shown to enhance the extent of ejection. We also found some optimal crowding conditions for which DNA content remaining in the capsid upon ejection is maximum, which correlates well with the optimal conditions of maximum DNA packaging efficiency into viral capsids observed almost 20 years ago. Biological consequences of this finding are discussed.  相似文献   

8.
The translocation of genetic material from the viral capsid to the cell is an essential part of the viral infection process. Whether the energetics of this process is driven by the energy stored within the confined nucleic acid or cellular processes pull the genome into the cell has been the subject of discussion. However, in vitro studies of genome ejection have been limited to a few head-tailed bacteriophages with a double-stranded DNA genome. Here we describe a DNA release system that operates in an archaeal virus. This virus infects an archaeon Haloarcula hispanica that was isolated from a hypersaline environment. The DNA-ejection velocity of His1, determined by single-molecule experiments, is comparable to that of bacterial viruses. We found that the ejection process is modulated by the external osmotic pressure (polyethylene glycol (PEG)) and by increased ion (Mg2+ and Na+) concentration. The observed ejection was unidirectional, randomly paused, and incomplete, which suggests that cellular processes are required to complete the DNA transfer.  相似文献   

9.
The transfer of the bacteriophage genome from the capsid into the host cell is a key step of the infectious process. In bacteriophage T5, DNA ejection can be triggered in vitro by simple binding of the phage to its purified Escherichia coli receptor FhuA. Using electrophoresis and cryo-electron microscopy, we measure the extent of DNA ejection as a function of the external osmotic pressure. In the high pressure range (7-16 atm), the amount of DNA ejected decreases with increasing pressure, as theoretically predicted and observed for λ and SPP1 bacteriophages. In the low and moderate pressure range (2-7 atm), T5 exhibits an unexpected behavior. Instead of a unique ejected length, multiple populations coexist. Some phages eject their complete genome, whereas others stop at some nonrandom states that do not depend on the applied pressure. We show that contrarily to what is observed for the phages SPP1 and λ, T5 ejection cannot be explained as resulting from a simple pressure equilibrium between the inside and outside of the capsid. Kinetics parameters and/or structural characteristics of the ejection machinery could play a determinant role in T5 DNA ejection.  相似文献   

10.
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. “Decoration” proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to ∼ 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage λ as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage λ capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to “idle” at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-γS only partially stabilizes the nucleocapsid, and a DNA is released in “quantized” steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.  相似文献   

11.
Bacteriophages, phages for short, are viruses of bacteria. The majority of phages contain a double-stranded DNA genome packaged in a capsid at a density of ~500 mg ml(-1). This high density requires substantial compression of the normal B-form helix, leading to the conjecture that DNA in mature phage virions is under significant pressure, and that pressure is used to eject the DNA during infection. A large number of theoretical, computer simulation and in vitro experimental studies surrounding this conjecture have revealed many--though often isolated and/or contradictory--aspects of packaged DNA. This prompts us to present a unified view of the statistical physics and thermodynamics of DNA packaged in phage capsids. We argue that the DNA in a mature phage is in a (meta)stable state, wherein electrostatic self-repulsion is balanced by curvature stress due to confinement in the capsid. We show that in addition to the osmotic pressure associated with the packaged DNA and its counterions, there are four different pressures within the capsid: pressure on the DNA, hydrostatic pressure, the pressure experienced by the capsid and the pressure associated with the chemical potential of DNA ejection. Significantly, we analyze the mechanism of force transmission in the packaged DNA and demonstrate that the pressure on DNA is not important for ejection. We derive equations showing a strong hydrostatic pressure difference across the capsid shell. We propose that when a phage is triggered to eject by interaction with its receptor in vitro, the (thermodynamic) incentive of water molecules to enter the phage capsid flushes the DNA out of the capsid. In vivo, the difference between the osmotic pressures in the bacterial cell cytoplasm and the culture medium similarly results in a water flow that drags the DNA out of the capsid and into the bacterial cell.  相似文献   

12.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.  相似文献   

13.
The assembly of "complex" DNA viruses such as the herpesviruses and many tailed bacteriophages includes a DNA packaging step where the viral genome is inserted into a preformed procapsid shell. Packaging triggers a remarkable capsid expansion transition that results in thinning of the shell and an increase in capsid volume to accept the full-length genome. This transition is considered irreversible; however, here we demonstrate that the phage λ procapsid can be expanded with urea in vitro and that the transition is fully reversible. This provides an unprecedented opportunity to evaluate the thermodynamic features of this fascinating and essential step in virus assembly. We show that urea-triggered expansion is highly cooperative and strongly temperature dependent. Thermodynamic analysis indicates that the free energy of expansion is influenced by magnesium concentration (3-13?kcal/mol in the presence of 0.2-10?mM Mg(2+)) and that significant hydrophobic surface area is exposed in the expanded shell. Conversely, Mg(2+) drives the expanded shell back to the procapsid conformation in a highly cooperative transition that is also temperature dependent and strongly influenced by urea. We demonstrate that the gpD decoration protein adds to the urea-expanded capsid, presumably at hydrophobic patches exposed at the 3-fold axes of the expanded capsid lattice. The decorated capsid is biologically active and sponsors packaging of the viral genome in vitro. The roles of divalent metal and hydrophobic interactions in controlling packaging-triggered expansion of the procapsid shell are discussed in relation to a general mechanism for DNA-triggered procapsid expansion in the complex double-stranded DNA viruses.  相似文献   

14.
A remarkable property of bacteriophages is their capacity to encapsidate large amounts of DNA during morphogenesis and to maintain their genome in the capsid in a very stable form even under extreme conditions. Even as remarkable is the efficiency with which their genome is ejected from the phage particle and transferred into the host bacteria. Biophysical techniques have led to significant progresses in characterizing these mechanisms. The molecular motor of encapsidation of several phages as well as the organization of viral capsids have been described at atomic resolution. Cryo-electron microscopy and fluorescence microscopy have permitted to describe DNA ejection at the level of single phage particles. Theoretical models of encapsidation and ejection have been proposed that can be confronted to experimental data. This review will present the state of the art on the recent advances brought by biophysics in this field. Reference will be given to the work performed on double-stranded DNA phages and on one of its representative, phage T5, our working model.  相似文献   

15.
Biological membranes are notoriously resistant to structural analysis. Excellent candidates to tackle this problem in situ are membrane-containing viruses where the membrane is constrained by an icosahedral capsid. Cryo-EM and image reconstruction of bacteriophage PM2 revealed a membrane bilayer following the internal surface of the capsid. The viral genome closely interacts with the inner leaflet. The capsid, at a resolution of 8.4 A, reveals 200 trimeric capsomers with a pseudo T = 21 dextro organization. Pentameric receptor-binding spikes protrude from the surface. It is evident from the structure that the PM2 membrane has at least two important roles in the life cycle. First, it acts as a scaffold to nucleate capsid assembly. Second, after host recognition, it fuses with the host outer membrane to promote genome entry. The structure also sheds light on how the viral supercoiled circular double-stranded DNA genome might be packaged and released.  相似文献   

16.
Herpes simplex type 1 virus (HSV-1) and bacteriophage λ capsids undergo considerable structural changes during self-assembly and DNA packaging. The initial steps of viral capsid self-assembly require weak, non-covalent interactions between the capsid subunits to ensure free energy minimization and error-free assembly. In the final stages of DNA packaging, however, the internal genome pressure dramatically increases, requiring significant capsid strength to withstand high internal genome pressures of tens of atmospheres. Our data reveal that the loosely formed capsid structure is reinforced post-assembly by the minor capsid protein UL25 in HSV-1 and gpD in bacteriophage λ. Using atomic force microscopy nano-indentation analysis, we show that the capsid becomes stiffer upon binding of UL25 and gpD due to increased structural stability. At the same time the force required to break the capsid increases by ∼70% for both herpes and phage. This demonstrates a universal and evolutionarily conserved function of the minor capsid protein: facilitating the retention of the pressurized viral genome in the capsid. Since all eight human herpesviruses have UL25 orthologs, this discovery offers new opportunities to interfere with herpes replication by disrupting the precise force balance between the encapsidated DNA and the capsid proteins crucial for viral replication.  相似文献   

17.
In a previous communication (Kindt et al., 2001) we reported preliminary results of Brownian dynamics simulation and analytical theory which address the packaging and ejection forces involving DNA in bacteriophage capsids. In the present work we provide a systematic formulation of the underlying theory, featuring the energetic and structural aspects of the strongly confined DNA. The free energy of the DNA chain is expressed as a sum of contributions from its encapsidated and released portions, each expressed as a sum of bending and interstrand energies but subjected to different boundary conditions. The equilibrium structure and energy of the capsid-confined and free chain portions are determined, for each ejected length, by variational minimization of the free energy with respect to their shape profiles and interaxial spacings. Numerical results are derived for a model system mimicking the lambda-phage. We find that the fully encapsidated genome is highly compressed and strongly bent, forming a spool-like condensate, storing enormous elastic energy. The elastic stress is rapidly released during the first stage of DNA injection, indicating the large force (tens of pico Newtons) needed to complete the (inverse) loading process. The second injection stage sets in when approximately 1/3 of the genome has been released, and the interaxial distance has nearly reached its equilibrium value (corresponding to that of a relaxed torus in solution); concomitantly the encapsidated genome begins a gradual morphological transformation from a spool to a torus. We also calculate the loading force, the average pressure on the capsid's walls, and the anisotropic pressure profile within the capsid. The results are interpreted in terms of the (competing) bending and interaction components of the packing energy, and are shown to be in good agreement with available experimental data.  相似文献   

18.
During the assembly of many viruses, a powerful molecular motor compacts the genome into a preassembled capsid. Here, we present measurements of viral DNA packaging in bacteriophage phi29 using an improved optical tweezers method that allows DNA translocation to be measured from initiation to completion. This method allowed us to study the previously uncharacterized early stages of packaging and facilitated more accurate measurement of the length of DNA packaged. We measured the motor velocity versus load at near-zero filling and developed a ramped DNA stretching technique that allowed us to measure the velocity versus capsid filling at near-zero load. These measurements reveal that the motor can generate significantly higher velocities and forces than detected previously. Toward the end of packaging, the internal force resisting DNA confinement rises steeply, consistent with the trend predicted by many theoretical models. However, the force rises to a higher magnitude, particularly during the early stages of packaging, than predicted by models that assume coaxial inverse spooling of the DNA. This finding suggests that the DNA is not arranged in that conformation during the early stages of packaging and indicates that internal force is available to drive complete genome ejection in vitro. The maximum force exceeds 100 pN, which is about one-half that predicted to rupture the capsid shell.  相似文献   

19.
Gp7 is a minor capsid protein of the Bacillus subtilis bacteriophage SPP1. Homologous proteins are found in numerous phages but their function remained unknown. Deletion of gene 7 from the SPP1 genome yielded a mutant phage (SPP1del7) with reduced burst-size. SPP1del7 infections led to normal assembly of virus particles whose morphology, DNA and protein composition was undistinguishable from wild-type virions. However, only approximately 25% of the viral particles that lack gp7 were infectious. SPP1del7 particles caused a reduced depolarization of the B. subtilis membrane in infection assays suggesting a defect in virus genome traffic to the host cell. A higher number of SPP1del7 DNA ejection events led to abortive release of DNA to the culture medium when compared with wild-type infections. DNA ejection in vitro showed that no detectable gp7 is co-ejected with the SPP1 genome and that its presence in the virion correlated with anchoring of released DNA to the phage particle. The release of DNA from wild-type phages was slower than that from SPP1del7 suggesting that gp7 controls DNA exit from the virion. This feature is proposed to play a central role in supporting correct routing of the phage genome from the virion to the cell cytoplasm.  相似文献   

20.
Baculoviruses are one of the largest viruses that replicate in the nucleus of their host cells. During an infection the capsid, containing the DNA viral genome, is released into the cytoplasm and delivers the genome into the nucleus by a mechanism that is largely unknown. Here, we used capsids of the baculovirus Autographa californica multiple nucleopolyhedrovirus in combination with electron microscopy and discovered this capsid crosses the NPC and enters into the nucleus intact, where it releases its genome. To better illustrate the existence of this capsid through the NPC in its native conformation, we reconstructed the nuclear import event using electron tomography. In addition, using different experimental conditions, we were able to visualize the intact capsid interacting with NPC cytoplasmic filaments, as an initial docking site, and midway through the NPC. Our data suggests the NPC central channel undergoes large-scale rearrangements to allow translocation of the intact 250-nm long baculovirus capsid. We discuss our results in the light of the hypothetical models of NPC function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号