首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoenolpyruvate carboxylase is an ubiquitous cytosolic enzyme that catalyzes the ß-carboxylation of phosphoenolpyruvate (PEP) and is encoded by multigene family in plants. It plays an important role in carbon economy of plants by assimilating CO2 into organic acids for subsequent C4 or CAM photosynthesis or to perform several anaplerotic roles in non-photosynthetic tissues. In this study, a cDNA clone encoding for PEPC polypeptide possessing signature motifs characteristic to ZmC4PEPC was isolated from Pennisetum glaucum (PgPEPC). Deduced amino acid sequence revealed its predicted secondary structure consisting of forty alpha helices and eight beta strands is well conserved among other PEPC homologs irrespective of variation in their primary amino acid sequences. Predicted PgPEPC quartenary structure is a tetramer consisting of a dimer of dimers, which is globally akin to maize PEPC crystal structure with respect to major chain folding wherein catalytically important amino acid residues of active site geometry are conserved. Recombinant PgPEPC protein expressed in E. coli and purified to homogeneity, possessed in vitro ß-carboxylation activity that is determined using a coupled reaction converting PEP into malate. Tetramer is the most active form, however, it exists in various oligomeric forms depending upon the protein concentration, pH, ionic strength of the media and presence of its substrate or effecters. Recombinant PgPEPC protein confers enhanced growth advantage to E. coli under harsh growth conditions in comparison to their respective controls; suggesting that PgPEPC plays a significant role in stress adaptation.  相似文献   

2.
The FNT (formate-nitrite transporters) form a superfamily of pentameric membrane channels that translocate monovalent anions across biological membranes. FocA (formate channel A) translocates formate bidirectionally but the mechanism underlying how translocation of formate is controlled and what governs substrate specificity remains unclear. Here we demonstrate that the normally soluble dimeric enzyme pyruvate formate-lyase (PflB), which is responsible for intracellular formate generation in enterobacteria and other microbes, interacts specifically with FocA. Association of PflB with the cytoplasmic membrane was shown to be FocA dependent and purified, Strep-tagged FocA specifically retrieved PflB from Escherichia coli crude extracts. Using a bacterial two-hybrid system, it could be shown that the N-terminus of FocA and the central domain of PflB were involved in the interaction. This finding was confirmed by chemical cross-linking experiments. Using constraints imposed by the amino acid residues identified in the cross-linking study, we provide for the first time a model for the FocA–PflB complex. The model suggests that the N-terminus of FocA is important for interaction with PflB. An in vivo assay developed to monitor changes in formate levels in the cytoplasm revealed the importance of the interaction with PflB for optimal translocation of formate by FocA. This system represents a paradigm for the control of activity of FNT channel proteins.  相似文献   

3.
4.
The carboxylesterase, a 34 kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 85 °C and 8.0, respectively. The enzyme showed remarkable thermostability: 41% of its activity remained after 5 days of incubation at 80 °C. In addition, the purified enzyme exhibited stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity towards various PNP esters and short acyl chain triacylglycerols such as tributyrin (C4:0). Among the PNP esters tested, the best substrate was PNP-caprylate (C8) with Km and kcat values of 71 μM and 14,700 s−1, respectively. The carboxylesterase gene consisted of 915 bp corresponding to 305 amino acid residues. We demonstrated that active recombinant S. solfataricus carboxylesterase could be expressed in Escherichia coli. The enzyme was identified as a serine esterase belonging to mammalian hormone-sensitive lipases (HSL) family and contained a catalytic triad composed of serine, histidine, and aspartic acid in the active site.  相似文献   

5.
Prions are the agents of a series of lethal neurodegenerative diseases. They are composed largely, if not entirely, of the host-encoded prion protein (PrP), which can exist in the cellular isoform PrPC and the pathological isoform PrPSc. The conformational change of the α-helical PrPC into β-sheet-rich PrPSc is the fundamental event of prion disease. The transition of recombinant PrP from a PrPC-like into a PrPSc-like conformation can be induced in vitro by submicellar concentrations of SDS. An α-helical dimer was identified that might represent either the native state of PrPC or the first step from the monomeric PrPC to highly aggregated PrPSc. In the present study, the molecular structure of these dimers was analyzed by introducing covalent cross-links using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. Inter- and intramolecular bonds between directly neighboured amino groups and carboxy groups were generated. The bonds formed in PrP dimers of recombinant PrP (90-231) were identified by tryptic digestion and subsequent mass spectrometric analysis. Intra- and intermolecular cross-links between N-terminal glycine and three acidic amino acid side chains in the globular part of PrP were identified, showing the N-terminal amino acids (90-124) are not as flexible as known from NMR analysis. When the cross-linked sites were used as structural constraint, molecular modeling calculations yielded a structural model for PrP dimer and its monomeric subunit, including the folding of amino acids 90-124 in addition to the known structure. Molecular dynamics of the structure after release of the constraint indicated an intrinsic stability of the domain of amino acids 90-124.  相似文献   

6.
We identified a conserved pattern of residues L-X(3-4)-R-X(2)-L-X(4)-G, in which -X(n)- is n residues of any amino acid, in two enzymes acting on the polyunsaturated fatty acids, diacylglycerol kinase epsilon (DGK?) and phosphatidylinositol-4-phosphate-5-kinase Iα (PIP5K Iα). DGK? is the only one of the 10 mammalian isoforms of DGK that exhibits arachidonoyl specificity and is the only isoform with the motif mentioned above. Mutations of the essential residues in this motif result in the loss of arachidonoyl specificity. Furthermore, DGKα can be converted to an enzyme having this motif by substituting only one residue. When DGKα was mutated so that it gained the motif, the enzyme also gained some specificity for arachidonoyl-containing diacylglycerol. This motif is present also in an isoform of phosphatidylinositol-4-phosphate-5-kinase that we demonstrated had arachidonoyl specificity for its substrate. Single residue mutations within the identified motif of this isoform result in the loss of activity against an arachidonoyl substrate. The importance of acyl chain specificity for the phosphatidic acid activation of phosphatidylinositol-4-phosphate-5-kinase is also shown. We demonstrate that the acyl chain dependence of this phosphatidic acid activation is dependent on the substrate. This is the first demonstration of a motif that endows specificity for an acyl chain in enzymes DGKε and PIP5K Iα.  相似文献   

7.
Siderophores are known virulence factors, and their biosynthesis is a target for new antibacterial agents. A non-ribosomal peptide synthetase-independent siderophore biosynthetic pathway in Dickeya dadantii is responsible for production of the siderophore achromobactin. The D. dadantii achromobactin biosynthesis protein D (AcsD) enzyme has been shown to enantioselectively esterify citric acid with l-serine in the first committed step of achromobactin biosynthesis. The reaction occurs in two steps: stereospecific activation of citric acid by adenylation, followed by attack of the enzyme-bound citryl adenylate by l-serine to produce the homochiral ester. We now report a detailed characterization of the substrate profile and mechanism of the second (acyl transfer) step of AcsD enzyme. We demonstrate that the enzyme catalyzes formation of not only esters but also amides from the citryl-adenylate intermediate. We have rationalized the substrate utilization profile for the acylation reaction by determining the first X-ray crystal structure of a product complex for this enzyme class. We have identified the residues that are important for both recognition of l-serine and catalysis of ester formation. Our hypotheses were tested by biochemical analysis of various mutants, one of which shows a reversal of specificity from the wild type with respect to non-natural substrates. This change can be rationalized on the basis of our structural data. That this change in specificity is accompanied by no loss in activity suggests that AcsD and other members of the non-ribosomal peptide synthetase-independent siderophore superfamily may have biotransformation potential.  相似文献   

8.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   

9.
Activated factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS)-based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetic assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting only the final deacylation portion of the transglutaminase reaction. With the MALDI–TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, Staphylococcus aureus fibronectin binding protein A, and thrombin-activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P−1 substrate position is sensitive to charge character, and the P−2 and P−3 substrate positions are sensitive to the broad FXIIIa substrate specificity pockets. The more distant P−8 to P−11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase.  相似文献   

10.
We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg2+ binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble proteins, purified to homogeneity and subsequently analysed for their kinetic parameters. A replacement of residues D9, K160, D184 or N189 resulted in a complete loss of phosphatase activity, consistent with an essential function for catalysis. In contrast, a substitution of D11, T123, N124 and D185 leads to sEH mutant proteins with altered kinetic properties. We further provide evidence of the formation of an acylphosphate intermediate on D9 by liquid chromatography-tandem mass spectrometry based on the detection of homoserine after NaBH4 reduction of the phosphorylated enzyme, which identifies D9 as the catalytic nucleophile. Surprisingly, we could only show such homoserine formation using the D11N mutant, which strongly suggests D11 to be involved in the acylphosphate hydrolysis. In the D11 mutant, the second catalytic step becomes rate limiting, which then allows trapping of the labile intermediate. Substrate turnover in the presence of 18H2O revealed that the nucleophilic attack during the second reaction step occurs at the acylphosphate phosphorous. Based on these findings, we propose a two-step catalytic mechanism of dephosphorylation that involves the phosphate substrate hydrolysis by nucleophilic attack by the catalytic nucleophile D9 followed by hydrolysis of the acylphosphate enzyme intermediate supported by D11.  相似文献   

11.
The condensation step of fatty acid elongation is the addition of a C2 unit from malonyl-CoA to an acyl primer catalyzed by one of two families of enzymes, the 3-ketoacyl-CoA synthases and the ELO-like condensing enzymes. 3-Ketoacyl-CoA synthases use a Claisen-like reaction mechanism while the mechanism of the ELO-catalyzed condensation reaction is unknown. We have used site-directed mutagenesis of Dictyostelium discoideum EloA to identify residues important to catalytic activity and/or structure. Mutation of highly conserved polar residues to alanine resulted in an inactive enzyme strongly suggesting that these residues play a role in the condensation reaction.  相似文献   

12.
The latex from Vasconcellea quercifolia (“oak leaved papaya”), a member of the Caricaceae family, contains at least seven cysteine endopeptidases with high proteolytic activity, which helps to protect these plants against injury. In this study, we isolated and characterized the most basic of these cysteine endopeptidases, named VQ-VII. This new purified enzyme was homogeneous by bidimensional electrophoresis and MALDI-TOF mass spectrometry, and exhibited a molecular mass of 23,984 Da and an isoelectric point >11. The enzymatic activity of VQ-VII was completely inhibited by E-64 and iodoacetic acid, confirming that it belongs to the catalytic group of cysteine endopeptidases. By investigating the cleavage of the oxidized insulin B-chain to establish the hydrolytic specificity of VQ-VII, we found 13 cleavage sites on the substrate, revealing that it is a broad-specificity peptidase. The pH profiles toward p-Glu-Phe-Leu-p-nitroanilide (PFLNA) and casein showed that the optimum pH is about 6.8 for both substrates, and that in casein, it is active over a wide pH range (activity higher than 80 % between pH 6 and 9.5). Kinetic enzymatic assays were performed with the thiol peptidase substrate PFLNA (K m = 0.454 ± 0.046 mM, k cat = 1.57 ± 0.07 s?1, k cat/K m = 3.46 × 103 ± 14 s?1 M?1). The N-terminal sequence (21 amino acids) of VQ-VII showed an identity >70 % with 11 plant cysteine peptidases and the presence of highly conserved residues and motifs shared with the “papain-like” family of peptidases. VQ-VII proved to be a new latex enzyme of broad specificity, which can degrade extensively proteins of different nature in a wide pH range.  相似文献   

13.
Shovanlal Gayen 《FEBS letters》2010,584(4):713-718
The C-terminal residues 98-104 are important for structure stability of subunit H of A1AO ATP synthases as well as its interaction with subunit A. Here we determined the structure of the segment H85-104 of H from Methanocaldococcus jannaschii, showing a helix between residues Lys90 to Glu100 and flexible tails at both ends. The helix-helix arrangement in the C-terminus was investigated by exchange of hydrophobic residues to single cysteine in mutants of the entire subunit H (HI93C, HL96C and HL98C). Together with the surface charge distribution of H85-104, these results shine light into the A-H assembly of this enzyme.  相似文献   

14.
Two endo-β-N-acetylglucosaminidases (CI and CI) acting on carbohydrate moieties of glycoproteins were highly purified from the culture fluid of Clostridium perfringens. CI had the substrate specificity indistinguishable from that of endo-β-N-acetylglucosaminidase D from Diplococcus pneumoniae. CII showed the specificity similar to that of endo-β-N-acetylglucosaminidase H from Streptomyces griseus but is distinct from the streptomyces enzyme with respect to the relative activity toward ovalbumin glycopeptides and Unit A glycopeptides of thyroglobulin. Both enzymes from C. perfringens were most active at neutral pH and were inhibited by p-chloromercuriphenylsulfonate.  相似文献   

15.
Glutathione transferases (GSTs) from the tau class (GSTU) are unique to plants and have important roles in stress tolerance and the detoxification of herbicides in crops and weeds. A fluorodifen-induced GST isoezyme (GmGSTU4-4) belonging to the tau class was purified from Glycine max by affinity chromatography. This isoenzyme was cloned and expressed in Escherichia coli, and its structural and catalytic properties were investigated. The structure of GmGSTU4-4 was determined at 1.75 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). The enzyme adopts the canonical GST fold but with a number of functionally important differences. Compared with other plant GSTs, the three-dimensional structure of GmGSTU4-4 primarily shows structural differences in the hydrphobic substrate binding site, the linker segment and the C-terminal region. The X-ray structure identifies key amino acid residues in the hydrophobic binding site (H-site) and provides insights into the substrate specificity and catalytic mechanism of the enzyme. The isoenzyme was highly active in conjugating the diphenylether herbicide fluorodifen. A possible reaction pathway involving the conjugation of glutathione with fluorodifen is described based on site-directed mutagenesis and molecular modeling studies. A serine residue (Ser13) is present in the active site, at a position that would allow it to stabilise the thiolate anion of glutathione and enhance its nucleophilicity. Tyr107 and Arg111 present in the active site are important structural moieties that modulate the catalytic efficiency and specificity of the enzyme, and participate in kcat regulation by affecting the rate-limiting step of the catalytic reaction. A hitherto undescribed ligand-binding site (L-site) located in a surface pocket of the enzyme was also found. This site is formed by conserved residues, suggesting it may have an important functional role in the transfer and delivery of bound ligands, presumably to specific protein receptors.  相似文献   

16.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1α promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11,14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on α-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and γ-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 μmol/45 min per mg protein by nickel–nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

17.
2-Ketopropyl-coenzyme M oxidoreductase/carboxylase (2-KPCC) is a member of the flavin and cysteine disulfide containing oxidoreductase family (DSOR) that catalyzes the unique reaction between atmospheric CO2 and a ketone/enolate nucleophile to generate acetoacetate. However, the mechanism of this reaction is not well understood. Here, we present evidence that 2-KPCC, in contrast to the well-characterized DSOR enzyme glutathione reductase, undergoes conformational changes during catalysis. Using a suite of biophysical techniques including limited proteolysis, differential scanning fluorimetry, and native mass spectrometry in the presence of substrates and inhibitors, we observed conformational differences between different ligand-bound 2-KPCC species within the catalytic cycle. Analysis of site-specific amino acid variants indicated that 2-KPCC-defining residues, Phe501-His506, within the active site are important for transducing these ligand induced conformational changes. We propose that these conformational changes promote substrate discrimination between H+ and CO2 to favor the metabolically preferred carboxylation product, acetoacetate.  相似文献   

18.
Two malonyltransferases were isolated from irradiated cell suspension cultures of parsley (Petroselinum hortense) and extensively purified. One enzyme was most active with flavone and flavonol 7-O-glycosides as substrates; the other enzyme preferentially malonylated flavonol 3-O-glucosides. The substrate specificity of the enzymes in vitro was in good agreement with the pattern of malonylated flavonoid glycosides occurring in the cell cultures in vivo. The apparent Km values for the most efficient substrates, including the donor of the acyl residue, malonyl-CoA, were about 4–20 μm. Both malonyltransferases had an apparent molecular weight of approximately 50,000.  相似文献   

19.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   

20.
Considerable insights into the oxidoreduction activity of the Xanthomonas campestris bacterioferritin comigratory protein (XcBCP) have been obtained from trapped intermediate/ligand complex structures determined by X-ray crystallography. Multiple sequence alignment and enzyme assay indicate that XcBCP belongs to a subfamily of atypical 2-Cys peroxiredoxins (Prxs), containing a strictly conserved peroxidatic cysteine (CP48) and an unconserved resolving cysteine (CR84). Crystals at different states, i.e. Free_SH state, Intra_SS state, and Inter_SS state, were obtained by screening the XcBCP proteins from a double C48S/C84S mutant, a wild type, and a C48A mutant, respectively. A formate or an alkyl analog with two water molecules that mimic an alkyl peroxide substrate was found close to the active site of the Free_SH or Inter_SS state, respectively. Their global structures were found to contain a novel substrate-binding pocket capable of accommodating an alkyl chain of no less than 16 carbons. In addition, in the Intra_SS or Inter_SS state, substantial local unfolding or complete unfolding of the CR-helix was detected, with the CP-helix remaining essentially unchanged. This is in contrast to the earlier observation that the CP-helix exhibits local unfolding during disulfide bond formation in typical 2-Cys Prxs. These rich experimental data have enabled us to propose a pathway by which XcBCP carries out its oxidoreduction activity through the alternate opening and closing of the substrate entry channel and the disulfide-bond pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号