首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the core of amyloid fibrils is the cross-β spine, a long tape of β-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a β-sheet bilayer with side chains within the bilayer forming a tightly interdigitating “steric zipper” interface. However, for a given peptide, different bilayer patterns are possible, and no quantitative explanation exists regarding which pattern is selected or under what condition there can be more than one pattern observed, exhibiting molecular polymorphism. We address the structural selection mechanism by performing molecular dynamics simulations to calculate the free energy of incorporating a peptide monomer into a β-sheet bilayer. We test filaments formed by several types of peptides including GNNQQNY, NNQQ, VEALYL, KLVFFAE and STVIIE, and find that the patterns with the lowest binding free energy correspond to available atomistic structures with high accuracy. Molecular polymorphism, as exhibited by NNQQ, is likely because there are more than one most stable structures whose binding free energies differ by less than the thermal energy. Detailed analysis of individual energy terms reveals that these short peptides are not strained nor do they lose much conformational entropy upon incorporating into a β-sheet bilayer. The selection of a bilayer pattern is determined mainly by the van der Waals and hydrophobic forces as a quantitative measure of shape complementarity among side chains between the β-sheets. The requirement for self-complementary steric zipper formation supports that amyloid fibrils form more easily among similar or same sequences, and it also makes parallel β-sheets generally preferred over anti-parallel ones. But the presence of charged side chains appears to kinetically drive anti-parallel β-sheets to form at early stages of assembly, after which the bilayer formation is likely driven by energetics.  相似文献   

2.
3.
Heparan sulfate (HS) and HS proteoglycans (HSPGs) colocalize with amyloid-β (Aβ) deposits in Alzheimer disease brain and in Aβ precursor protein (AβPP) transgenic mouse models. Heparanase is an endoglycosidase that specifically degrades the unbranched glycosaminoglycan side chains of HSPGs. The aim of this study was to test the hypothesis that HS and HSPGs are active participators of Aβ pathogenesis in vivo. We therefore generated a double-transgenic mouse model overexpressing both human heparanase and human AβPP harboring the Swedish mutation (tgHpa*Swe). Overexpression of heparanase did not affect AβPP processing because the steady-state levels of Aβ1–40, Aβ1–42, and soluble AβPP β were the same in 2- to 3-month-old double-transgenic tgHpa*Swe and single-transgenic tgSwe mice. In contrast, the Congo red-positive amyloid burden was significantly lower in 15-month-old tgHpa*Swe brain than in tgSwe brain. Likewise, the Aβ burden, measured by Aβx-40 and Aβx-42 immunohistochemistry, was reduced significantly in tgHpa*Swe brain. The intensity of HS-stained plaques correlated with the Aβx-42 burden and was reduced in tgHpa*Swe mice. Moreover, the HS-like molecule heparin facilitated Aβ1–42-aggregation in an in vitro Thioflavin T assay. The findings suggest that HSPGs contribute to amyloid deposition in tgSwe mice by increasing Aβ fibril formation because heparanase-induced fragmentation of HS led to a reduced amyloid burden. Therefore, drugs interfering with Aβ-HSPG interactions might be a potential strategy for Alzheimer disease treatment.  相似文献   

4.
Misfolded proteins associated with diverse aggregation disorders assemble not only into a single toxic conformer but rather into a suite of aggregated conformers with unique biochemical properties and toxicities. To what extent small molecules can target and neutralize specific aggregated conformers is poorly understood. Therefore, we have investigated the capacity of resveratrol to recognize and remodel five conformers (monomers, soluble oligomers, non-toxic oligomers, fibrillar intermediates, and amyloid fibrils) of the Aβ1–42 peptide associated with Alzheimer disease. We find that resveratrol selectively remodels three of these conformers (soluble oligomers, fibrillar intermediates, and amyloid fibrils) into an alternative aggregated species that is non-toxic, high molecular weight, and unstructured. Surprisingly, resveratrol does not remodel non-toxic oligomers or accelerate Aβ monomer aggregation despite that both conformers possess random coil secondary structures indistinguishable from soluble oligomers and significantly different from their β-sheet rich, fibrillar counterparts. We expect that resveratrol and other small molecules with similar conformational specificity will aid in illuminating the conformational epitopes responsible for Aβ-mediated toxicity.  相似文献   

5.
Aggregation of amyloid-β (Aβ) peptide, a 39- to 43-residue fragment of the amyloid precursor protein, is associated with Alzheimer's disease, the most common form of dementia in the elderly population. Several experimental studies have tried to characterize the atomic details of amyloid fibrils, which are the final product of Aβ aggregation. Much less is known about species forming during the early stages of aggregation, in particular about the monomeric state of the Aβ peptide that may be viewed as the product of the very first step in the hypothesized amyloid cascade. Here, the equilibrium ensembles of monomeric Aβ alloforms Aβ1-40 and Aβ1-42 are investigated by Monte Carlo simulations using an atomistic force field and implicit solvent model that have been shown previously to correctly reproduce the ensemble properties of other intrinsically disordered polypeptides.Our simulation results indicate that at physiological temperatures, both alloforms of Aβ assume a largely collapsed globular structure. Conformations feature a fluid hydrophobic core formed, on average, by contacts both within and between the two segments comprising residues 12-21 and 24-40/42, respectively. Furthermore, the 11 N-terminal residues are completely unstructured, and all charged side chains, in particular those of Glu22 and Asp23, remain exposed to solvent. Taken together, these observations indicate a micelle-like† architecture at the monomer level whose implications for oligomerization, as well as fibril formation and elongation, are discussed. We establish quantitatively the intrinsic disorder of Aβ and find the propensity to form regular secondary structure to be low but sequence specific. In the presence of a global and unspecific bias for backbone conformations to populate the β-basin, the β-sheet propensity along the sequence is consistent with the arrangement of the monomer within the fibril, as derived from solid-state NMR data. These observations indicate that the primary sequence partially encodes fibril structure, but that fibril elongation must be thought of as a templated assembly step.  相似文献   

6.
The 2006 trial of Suman Sood put criminal abortion on the public agenda for the first time in 25 years in NSW. Response to the case highlights tenacious myths about abortion law in Australia; namely that the common law “is an ass” that allows for abortion only by way of a lack of application of the law. By briefly explaining the history of abortion in Australia, I argue that the Sood case does not represent a general failure of the common law to allow abortion, nor does it support the popular myth that abortion is “technically” illegal, or that doctors who perform abortions have historically been the target of the criminal law in Australia. I show that contrary to myths promoted particularly around the 1998 Western Australian reforms, abortion has long been lawful in Australia, and the common law has merit compared to other regulatory regimes. Hence, arguments for alternative abortion regimes should not depend on myths which are shown to be unrepresentative of the political and legal situation in Australia.
Kate GleesonEmail:
  相似文献   

7.
Magnetic resonance imaging (MRI) can be used to monitor pathological changes in Alzheimer''s disease (AD). The objective of this longitudinal study was to assess the effects of progressive amyloid-related pathology on multiple MRI parameters in transgenic arcAβ mice, a mouse model of cerebral amyloidosis. Diffusion-weighted imaging (DWI), T1-mapping and quantitative susceptibility mapping (QSM), a novel MRI based technique, were applied to monitor structural alterations and changes in tissue composition imposed by the pathology over time. Vascular function and integrity was studied by assessing blood-brain barrier integrity with dynamic contrast-enhanced MRI and cerebral microbleed (CMB) load with susceptibility weighted imaging and QSM. A linear mixed effects model was built for each MRI parameter to incorporate effects within and between groups (i.e. genotype) and to account for changes unrelated to the disease pathology. Linear mixed effects modelling revealed a strong association of all investigated MRI parameters with age. DWI and QSM in addition revealed differences between arcAβ and wt mice over time. CMBs became apparent in arcAβ mice with 9 month of age; and the CMB load reflected disease stage. This study demonstrates the benefits of linear mixed effects modelling of longitudinal imaging data. Moreover, the diagnostic utility of QSM and assessment of CMB load should be exploited further in studies of AD.  相似文献   

8.
Erythropoietin (EPO), the key hormone for erythropoiesis, also increases nitric oxide (NO) bioavailability in endothelial cells (ECs), yet the definitive mechanisms are not fully understood. Increasing evidence has demonstrated that β common receptor (βCR) plays a crucial role in EPO-mediated non-hematopoietic effects. We investigated the role of βCR in EPO-induced endothelial NO synthase (eNOS) activation in bovine aortic ECs (BAECs) and the molecular mechanisms involved. Results of confocal microscopy and immunoprecipitation analyses revealed that βCR was colocalized and interacted with EPO receptor (EPOR) in ECs. Inhibition of βCR or EPOR by neutralizing antibodies or small interfering RNA abolished the EPO-induced NO production. Additionally, blockage of βCR abrogated the EPO-induced increase in the phosphorylation of eNOS, Akt, Src, or Janus kinase 2 (JAK2). Immunoprecipitation analysis revealed that treatment with EPO increased the interaction between βCR and eNOS, which was suppressed by inhibition of Src, JAK2, or Akt signaling with specific pharmacological inhibitors. Furthermore, EPO-induced EC proliferation, migration, and tube formation were blocked by pretreatment with βCR antibody and Src, JAK2, or PI3K/Akt inhibitors. Moreover, in vivo experiments showed that EPO increased the level of phosphorylated eNOS, Src, JAK2, and Akt, as well as βCR-eNOS association in aortas and promoted the angiogenesis in Matrigel plug, which was diminished by βCR or EPOR neutralizing antibodies. Our findings suggest that βCR may play an integrative role in the EPO signaling-mediated activation of eNOS in ECs.  相似文献   

9.
The interconversion of monomers, oligomers, and amyloid fibrils of the amyloid-β peptide (Aβ) has been implicated in the pathogenesis of Alzheimer disease. The determination of the kinetics of the individual association and dissociation reactions is hampered by the fact that forward and reverse reactions to/from different aggregation states occur simultaneously. Here, we report the kinetics of dissociation of Aβ monomers from protofibrils, prefibrillar high molecular weight oligomers previously shown to possess pronounced neurotoxicity. An engineered binding protein sequestering specifically monomeric Aβ was employed to follow protofibril dissociation by tryptophan fluorescence, precluding confounding effects of reverse or competing reactions. Aβ protofibril dissociation into monomers follows exponential decay kinetics with a time constant of ∼2 h at 25 °C and an activation energy of 80 kJ/mol, values typical for high affinity biomolecular interactions. This study demonstrates the high kinetic stability of Aβ protofibrils toward dissociation into monomers and supports the delineation of the Aβ folding and assembly energy landscape.  相似文献   

10.
Shi C  Zheng DD  Wu FM  Liu J  Xu J 《Neurochemical research》2012,37(2):298-306
Bilobalide (BB), a sesquiterpenoid extract of Ginkgo biloba leaves, has been demonstrated to have neuroprotective effects. The neuroprotective mechanisms were suggested to be associated with modulation of intracellular signaling cascades such as the phosphatidyl inositol 3-kinase (PI3K) pathway. Since some members of intracellular signalling pathways such as PI3K have been demonstrated to be involved in amyloid precursor protein (APP) processing, the present study investigated whether BB has an influence on the β-secretase-mediated APP cleavage via PI3K-dependent pathway. Using HT22 cells and SAMP8 mice (a senescence-accelerated strain of mice), this study showed that BB treatment reduced generation of two β-secretase cleavage products of APP, the amyloid β-peptide (Aβ) and soluble APPβ (sAPPβ), via PI3K-dependent pathway. Additionally, glycogen synthase kinase 3β (GSK3β) signaling might be involved in BB-induced Aβ reduction as a downstream target of the activated PI3K pathway. BB showed no significant effects on β-site APP cleaving enzyme 1 (BACE-1) or γ-secretase but inhibited the β-secretase activity of another protease cathepsin B, suggesting that BB-induced Aβ reduction was probably mediated through modulation of cathepsin B rather than BACE-1. Similarly, inhibition of GSK3β did not affect BACE-1 activity but decreased cathepsin B activity, suggesting that the PI3K-GSK3β pathway was probably involved in BB-induced Aβ reduction. Increasing evidence suggests that decreasing Aβ production in the brain via modulation of APP metabolism should be beneficial for the prevention and treatment of Alzheimer’s disease (AD). BB may offer such an approach to combat AD.  相似文献   

11.
Tens of millions of people are currently choosing health coverage on a state or federal health insurance exchange as part of the Patient Protection and Affordable Care Act. We examine how well people make these choices, how well they think they do, and what can be done to improve these choices. We conducted 6 experiments asking people to choose the most cost-effective policy using websites modeled on current exchanges. Our results suggest there is significant room for improvement. Without interventions, respondents perform at near chance levels and show a significant bias, overweighting out-of-pocket expenses and deductibles. Financial incentives do not improve performance, and decision-makers do not realize that they are performing poorly. However, performance can be improved quite markedly by providing calculation aids, and by choosing a “smart” default. Implementing these psychologically based principles could save purchasers of policies and taxpayers approximately 10 billion dollars every year.  相似文献   

12.
Our study focused on the relationship between amyloid β 1–42 (Aβ), sphingosine kinases (SphKs) and mitochondrial sirtuins in regulating cell fate. SphK1 is a key enzyme involved in maintaining sphingolipid rheostat in the brain. Deregulation of the sphingolipid metabolism may play a crucial role in the pathogenesis of Alzheimer’s disease (AD). Mitochondrial function and mitochondrial deacetylases, i.e. sirtuins (Sirt3,-4,-5), are also important for cell viability. In this study, we evaluated the interaction between Aβ1–42, SphKs and Sirts in cell survival/death, and we examined several compounds to indicate possible target(s) for a strategy protecting against cytotoxicity of Aβ1–42. PC12 cells were subjected to Aβ1–42 oligomers and SphK inhibitor SKI II for 24–96 h. Our data indicated that Aβ1–42 enhanced SphK1 expression and activity after 24 h, but down-regulated them after 96 h and had no effect on Sphk2. Aβ1–42 and SKI II induced free radical formation, disturbed the balance between pro- and anti-apoptotic proteins and evoked cell death. Simultaneously, up-regulation of anti-oxidative enzymes catalase and superoxide dismutase 2 was observed. Moreover, the total protein level of glycogen synthase kinase-3β was decreased. Aβ1–42 significantly increased the level of mitochondrial proteins: apoptosis-inducing factor AIF and Sirt3, -4, -5. By using several pharmacologically active compounds we showed that p53 protein plays a significant role at very early stages of Aβ1–42 toxicity. However, during prolonged exposure to Aβ1–42, the activation of caspases, MEK/ERK, and alterations in mitochondrial permeability transition pores were additional factors leading to cell death. Moreover, SphK product, sphingosine-1-phosphate (S1P), and Sirt activators and antioxidants, resveratrol and quercetin, significantly enhanced viability of cells subjected to Aβ1–42. Our data indicated that p53 protein and inhibition of SphKs may be early key events responsible for cell death evoked by Aβ1–42. We suggest that activation of S1P-dependent signalling and Sirts may offer a promising cytoprotective strategy.  相似文献   

13.
《Theriogenology》2015,84(9):1469-1476
The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (LHβ), and both contain a carboxy-terminal peptide. This unusual expression pattern intrigued us and led to our study of eLHβ subunit secretion by transfected Chinese hamster ovary and Madin–Darby canine kidney cells. In continuous labeling and pulse-chase experiments, the secretion of the eLHβ subunit from the transfected Chinese hamster ovary cells was inefficient (medium recovery of 16%–25%) and slow (t1/2 > 6.5 hours). This indicated that, the secretion of the eLHβ subunit resembles that of hLHβ rather than hCGβ. In Madin–Darby canine kidney cells grown on Transwell filters, the eLHβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (∼65% of the total protein secreted). Taken together, these data suggested that secretion of the eLHβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the LH and CG β-subunits in the pituitary and placenta, respectively.  相似文献   

14.
Transforming growth factor-β2 (TGF-β2) is found in increasing amounts in aqueous humor and reactive optic nerve astrocytes of patients with primary open-angle glaucoma (POAG), a major cause of blindness worldwide. The available data strongly indicate that TGF-β2 is a key player contributing to the structural changes in the extracellular matrix (ECM) of the trabecular meshwork and optic nerve head as characteristically seen in POAG. The changes involve an induction in the expression of various ECM molecules and are remarkably similar in trabecular meshwork cells and optic nerve head astrocytes. The ECM changes in the trabecular meshwork most probably play a role in the increase of aqueous humor outflow resistance causing higher intraocular pressure (IOP). In the optic nerve head, TGF-β2-induced changes might contribute to deformation of the optic nerve axons causing impairment of axonal transport and neurotrophic supply and leading to their continuous degeneration. The increase in IOP further adds mechanical stress and strain to optic nerve axons and accelerates degenerative changes. In addition, high IOP might induce the expression of activated TGF-β1 in trabecular meshwork cells and optic nerve head astrocytes; this again might significantly lead to the progress of axonal degeneration. The action of TGF-β2 in POAG is largely mediated through the connective tissue growth factor, whereas the activities of TGF-β1 and -β2 are modulated by the blocking effects of bone morphogenetic protein-4 (BMP-4) and BMP-7, by gremlin that inhibits BMP signaling and by several species of microRNAs.  相似文献   

15.
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer''s disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca2+- and N-glycan-independent interaction is mediated by amino acids 330–344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330–344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer''s disease.  相似文献   

16.
The transforming growth factor β (TGF-β) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-β coreceptors endoglin and betaglycan are emerging as modulators of the TGF-β response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.  相似文献   

17.
MOTIVATION: Business Architecture Models (BAMs) describe what a business does, who performs the activities, where and when activities are performed, how activities are accomplished and which data are present. The purpose of a BAM is to provide a common resource for understanding business functions and requirements and to guide software development. The cancer Biomedical Informatics Grid (caBIG?) Life Science BAM (LS BAM) provides a shared understanding of the vocabulary, goals and processes that are common in the business of LS research. RESULTS: LS BAM 1.1 includes 90 goals and 61 people and groups within Use Case and Activity Unified Modeling Language (UML) Diagrams. Here we report on the model's current release, LS BAM 1.1, its utility and usage, and plans for future use and continuing development for future releases. Availability and Implementation: The LS BAM is freely available as UML, PDF and HTML (https://wiki.nci.nih.gov/x/OFNyAQ).  相似文献   

18.
Aortic medial amyloid (AMA) is the most common localized human amyloid, occurring in virtually all of the Caucasian population over the age of 50. The main protein component of AMA, medin, readily assembles into amyloid-like fibrils in vitro. Despite the prevalence of AMA, little is known about the self-assembly mechanism of medin or the molecular architecture of the fibrils. The amino acid sequence of medin is strikingly similar to the sequence of the Alzheimer disease (AD) amyloid-β (Aβ) polypeptides around the structural turn region of Aβ, where mutations associated with familial, early onset AD, have been identified. Asp25 and Lys30 of medin align with residues Asp23 and Lys28 of Aβ, which are known to form a stabilizing salt bridge in some fibril morphologies. Here we show that substituting Asp25 of medin with asparagine (D25N) impedes assembly into fibrils and stabilizes non-cytotoxic oligomers. Wild-type medin, by contrast, aggregates into β-sheet-rich amyloid-like fibrils within 50 h. A structural analysis of wild-type fibrils by solid-state NMR suggests a molecular repeat unit comprising at least two extended β-strands, separated by a turn stabilized by a Asp25-Lys30 salt bridge. We propose that Asp25 drives the assembly of medin by stabilizing the fibrillar conformation of the peptide and is thus reminiscent of the influence of Asp23 on the aggregation of Aβ. Pharmacological comparisons of wild-type medin and D25N will help to ascertain the pathological significance of this poorly understood protein.  相似文献   

19.
Alzheimer’s disease (AD)-associated amyloid β peptide (Aβ) is one of the main actors in AD pathogenesis. Aβ is characterized by its high tendency to self-associate, leading to the generation of oligomers and amyloid fibrils. The elucidation of pathways and intermediates is crucial for the understanding of protein assembly mechanisms in general and in conjunction with neurodegenerative diseases, e.g., for the identification of new therapeutic targets. Our study focused on Aβ42 and its oligomeric assemblies in the lag phase of amyloid formation, as studied by sedimentation velocity (SV) centrifugation. The assembly state of Aβ during the lag phase, the time required by an Aβ solution to reach the exponential growth phase of aggregation, was characterized by a dominant monomer fraction below 1 S and a population of oligomeric species between 4 and 16 S. From the oligomer population, two major species close to a 12-mer and an 18-mer with a globular shape were identified. The recurrence of these two species at different initial concentrations and experimental conditions as the smallest assemblies present in solution supports the existence of distinct, energetically favored assemblies in solution. The sizes of the two species suggest an Aβ42 aggregation pathway that is based on a basic hexameric building block. The study demonstrates the potential of SV analysis for the evaluation of protein aggregation pathways.  相似文献   

20.
Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1–40 and Aβ1–42 are the dominant forms. The fibril architectures of Aβ1–40 and Aβ1–42 differ and Aβ1–42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1–42 can be cross-templated and incorporated into the ends of Aβ1–40 fibrils, while incorporation of Aβ1–40 monomers into Aβ1–42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1–40 to incorporate into the ends of Aβ1–42 fibrils and the capacity of Aβ1–42 monomers to adopt the properties of Aβ1–40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1–42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1–40 from adopting the fibrillar properties of Aβ1–42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号