首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a strategy for the rapid selection of mutant aminoacyl-tRNA synthetases (aaRS) with specificity for a novel amino acid based on fluorescence-activated cell sorting of transformed Escherichia coli using as reporter the enhanced green fluorescent protein (eGFP) whose gene carries an amber stop codon (TAG) at a permissive site upstream of the fluorophore. To this end, a one-plasmid expression system was developed encoding an inducible modified Methanocaldococcus jannaschii (Mj) tyrosyl-tRNA synthetase, the orthogonal cognate suppressor tRNA, and eGFPUAG in an individually regulatable fashion. Using this system a previously described aaRS with specificity for O-methyl-L-tyrosine (MeTyr) was engineered for 10-fold improved incorporation of the foreign amino acid by selection from a mutant library, prepared by error-prone as well as focused random mutagenesis, for MeTyr-dependent eGFP fluorescence. Applying alternating cycles of positive and negative fluorescence-activated bacterial cell sorting in the presence or in the absence, respectively, of the foreign amino acid was crucial to select for high specificity of MeTyr incorporation. The optimized synthetase was used for the preparative expression of a modified uvGFP carrying MeTyr at position 66 as part of its fluorophore. This biosynthetic protein showed quantitative incorporation of the non-natural amino acid, as determined by mass spectrometry, and it revealed a unique emission spectrum due to the altered chemical structure of its fluorophore. Our combined genetic/selection system offers advantages over earlier approaches that relied wholly or in part on antibiotic selection schemes, and it should be generally useful for the engineering and optimization of orthogonal aaRS/tRNA pairs to incorporate non-natural amino acids into recombinant proteins.  相似文献   

2.
Incorporation of unnatural amino acids into proteins in vivo, known as expanding the genetic code, is a useful technology in the pharmaceutical and biotechnology industries. This procedure requires an orthogonal suppressor tRNA that is uniquely acylated with the desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. In order to enhance the numbers and types of suppressor tRNAs available for engineering genetic codes, we have developed a convenient screening system to generate suppressor tRNAs with good orthogonality from the available library of suppressor tRNA mutants. While developing an amber suppressor tRNA, we discovered that amber suppressor tRNA with poor orthogonality inhibited the growth rate of the host, indicating that suppressor tRNA demonstrates a species-specific toxicity to host cells. We verified this species-specific toxicity using amber suppressor tRNA mutants from prokaryotes, eukaryotes, and archaea. We also confirmed that adding terminal CCA to Methanococcus jannaschii tRNATyr mutant is important to its toxicity against Escherichia coli. Further, we compared the toxicity of the suppressor tRNA toward the host with differing copy numbers. Using the combined toxicity of suppressor tRNA toward the host with blue–white selection, we developed a convenient screening system for orthogonal suppressor tRNA that could serve as a general platform for generating tRNA/aaRS pairs and thereby obtained three suppressor tRNA mutants with high orthogonality from the tRNA library derived from Mj tRNATyr.  相似文献   

3.
4.
Hao ZX  Tan M  Liu CD  Feng R  Wang ED  Zhu G 《FEBS letters》2010,584(21):4449-4452
The millisecond conformational flexibility is functionally important for nucleic acids and can be studied through probing the base pair open-close kinetics by proton exchange nuclear magnetic resonance (NMR) spectroscopy. Here, the traditional imino proton exchange NMR experiments were modified with transverse relaxation optimized spectroscopy and were applied to accurately measure imino proton exchange rates of all base pairs in Escherichia coli tRNALeu (CAG), and their dependence on magnesium ion concentration. Finally, we correlated millisecond conformational flexibility with aminoacylation of tRNALeu and proposed that the flexibility of the acceptor stem and the core region might contribute to aminoacylation of tRNALeu.  相似文献   

5.
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNAGln for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNAGln and tRNAGlu with glutamate. This ancient GluRS also separately differentiated to exclude tRNAGln as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNAGln and tRNAGlu recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.  相似文献   

6.
Pyrrolysyl-tRNA synthetase (PylRS), an aminoacyl-tRNA synthetase (aaRS) recently found in some methanogenic archaea and bacteria, recognizes an unusually large lysine derivative, l-pyrrolysine, as the substrate, and attaches it to the cognate tRNA (tRNAPyl). The PylRS-tRNAPyl pair interacts with none of the endogenous aaRS-tRNA pairs in Escherichia coli, and thus can be used as a novel aaRS-tRNA pair for genetic code expansion. The crystal structures of the Methanosarcina mazei PylRS revealed that it has a unique, large pocket for amino acid binding, and the wild type M. mazei PylRS recognizes the natural lysine derivative as well as many lysine analogs, including N?-(tert-butoxycarbonyl)-l-lysine (Boc-lysine), with diverse side chain sizes and structures. Moreover, the PylRS only loosely recognizes the α-amino group of the substrate, whereas most aaRSs, including the structurally and genetically related phenylalanyl-tRNA synthetase (PheRS), strictly recognize the main chain groups of the substrate. We report here that wild type PylRS can recognize substrates with a variety of main-chain α-groups: α-hydroxyacid, non-α-amino-carboxylic acid, Nα-methyl-amino acid, and d-amino acid, each with the same side chain as that of Boc-lysine. In contrast, PheRS recognizes none of these amino acid analogs. By expressing the wild type PylRS and its cognate tRNAPyl in E. coli in the presence of the α-hydroxyacid analog of Boc-lysine (Boc-LysOH), the amber codon (UAG) was recoded successfully as Boc-LysOH, and thus an ester bond was site-specifically incorporated into a protein molecule. This PylRS-tRNAPyl pair is expected to expand the backbone diversity of protein molecules produced by both in vivo and in vitro ribosomal translation.  相似文献   

7.
New tools are needed to study the intracellular pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), to facilitate new drug discovery and vaccine development. We have developed methodology to genetically incorporate unnatural amino acids into proteins in Mycobacterium smegmatis, BCG and Mtb, grown both extracellularly in culture and inside host cells. Orthogonal mutant tRNATyr/tyrosyl-tRNA synthetase pairs derived from Methanococcus jannaschii and evolved in Escherichia coli incorporate a variety of unnatural amino acids (including photocrosslinking, chemically reactive, heavy atom containing, and immunogenic amino acids) into proteins in response to the amber nonsense codon. By taking advantage of the fidelity and suppression efficiency of the MjtRNA/pIpaRS pair in mycobacteria, we are also able to use p-iodophenylalanine to induce the expression of proteins in mycobacteria both extracellularly in culture and inside of mammalian host cells. This provides a new approach to regulate the expression of reporter genes or mycobacteria endogenous genes of interest. The establishment of the unnatural amino acid expression system in Mtb, an intracellular pathogen, should facilitate studies of TB biology and vaccine development.  相似文献   

8.
We describe an E. coli-based optimized system for the production of uricase with keto functional groups incorporated efficiently and site-specifically. In the process, the orthogonal suppressor tRNA/aminoacyl-tRNA synthetase (aaRS) pair specific for p-acetylphenylalanine (pAcF) was optimized to be effective at pAcF incorporation, showing no toxicity to the host cells. The efficiency of pAcF incorporation was further improved by coupling five copies of the T-stem mutant suppressor tRNA gene omitted the 3′ terminal CCA with two constitutive copies of the D286R mutant aaRS gene in a single-plasmid construct. To assay the utility of the optimized system, we incorporated pAcF in response to three independent amber nonsense codons (Lys21TAG, Phe170TAG, Lys248TAG) into uricase. Under optimized expression conditions, 24 mg/L mutant uricase was produced, corresponding to 40% of the yield of wild-type uricase (UOXWT). The desired specificity for incorporation of pAcF into uricase was confirmed. Kinetic measurements and spectroscopic study performed by CD did not show any relevant differences in the substrate affinity, the catalytic activity and protein secondary structure between native and mutant uricase. Additionally, the mutant uricase was site-specifically modified with methoxy-PEG-oxyamine (mPEG5K-ONH2). This efficient system provides reactive handles for a rational PEGylation to manipulate uricase structure and function and will be beneficial for enhancing the incorporation of other unnatural amino acids into proteins.  相似文献   

9.
The numerous modifications of tRNA play central roles in controlling tRNA structure and translation. Modifications in and around the anticodon loop often have critical roles in decoding mRNA and in maintaining its reading frame. Residues U38 and U39 in the anticodon stem–loop are frequently modified to pseudouridine (Ψ) by members of the widely conserved TruA/Pus3 family of pseudouridylases. We investigate here the cause of the temperature sensitivity of pus3Δ mutants of the yeast Saccharomyces cerevisiae and find that, although Ψ38 or Ψ39 is found on at least 19 characterized cytoplasmic tRNA species, the temperature sensitivity is primarily due to poor function of tRNAGln(UUG), which normally has Ψ38. Further investigation reveals that at elevated temperatures there are substantially reduced levels of the s2U moiety of mcm5s2U34 of tRNAGln(UUG) and the other two cytoplasmic species with mcm5s2U34, that the reduced s2U levels occur in the parent strain BY4741 and in the widely used strain W303, and that reduced levels of the s2U moiety are detectable in BY4741 at temperatures as low as 33°C. Additional examination of the role of Ψ38,39 provides evidence that Ψ38 is important for function of tRNAGln(UUG) at permissive temperature, and indicates that Ψ39 is important for the function of tRNATrp(CCA) in trm10Δ pus3Δ mutants and of tRNALeu(CAA) as a UAG nonsense suppressor. These results provide evidence for important roles of both Ψ38 and Ψ39 in specific tRNAs, and establish that modification of the wobble position is subject to change under relatively mild growth conditions.  相似文献   

10.
The noncanonical amino acid p-azidomethyl-l-phenylalanine can be genetically incorporated into proteins in bacteria, and has been used both as a spectroscopic probe and for the selective modification of proteins by alkynes using click chemistry. Here we report identification of Escherichia coli tyrosyl tRNA synthetase mutants that allow incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast. When expressed together with the cognate E. coli tRNACUATyr, the new mutant tyrosyl tRNA synthetases directed robust incorporation of p-azidomethyl-l-phenylalanine into a model protein, human superoxide dismutase, in response to the UAG amber nonsense codon. Mass spectrometry analysis of purified superoxide dismutase proteins confirmed the efficient site-specific incorporation of p-azidomethyl-l-phenylalanine. This work provides an additional tool for the selective modification of proteins in eukaryotic cells.  相似文献   

11.
For novel insights into the pathogenicity of Candida albicans, studies on molecular interactions of central virulence factors are crucial. Since methods for the analysis of direct molecular interactions of proteins in vivo are scarce, we expanded the genetic code of C. albicans with the synthetic photo-cross-linking amino acid p-azido-l-phenylalanine (AzF). Interacting molecules in close proximity of this unnatural amino acid can be covalently linked by UV-induced photo-cross-link, which makes unknown interacting molecules available for downstream identification. Therefore, we applied an aminoacyl-tRNA synthetase and a suppressor tRNA pair (EcTyrtRNACUA) derived from Escherichia coli, which was previously reported to be orthogonal in Saccharomyces cerevisiae. We further optimized the aminoacyl-tRNA synthetase for AzF (AzF-RS) and EcTyrtRNACUA for C. albicans and identified one AzF-RS with highest charging efficiency. Accordingly, incorporation of AzF into selected model proteins such as Tsa1p or Tup1p could be considerably enhanced. Immunologic detection of C-terminally tagged Tsa1p and Tup1p upon UV irradiation in a strain background containing suppressor tRNA and optimized AzF-RS revealed not only the mutant monomeric forms of these proteins but also higher-molecular-weight complexes, strictly depending on the specific position of incorporated AzF and UV excitation. By Western blotting and tandem mass spectrometry, we could identify these higher-molecular-weight complexes as homodimers consisting of one mutant monomer and a differently tagged, wild-type version of Tsa1p or Tup1p, respectively, demonstrating that expanding the genetic code of C. albicans with the unnatural photo-cross-linker amino acid AzF and applying it for in vivo binary protein interaction analyses is feasible.  相似文献   

12.
13.
Glutamyl-queuosine tRNAAsp synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNAAsp. Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNAGlu, Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3′ accepting end of the cognate tRNAGlu, Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNAAsp. In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS·Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNAAsp among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNAAsp that determine recognition by Glu-Q-RS. The analyses made on tRNAAsp and tRNAAsn show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.  相似文献   

14.
In protein synthesis, threonyl-tRNA synthetase (ThrRS) must recognize threonine (Thr) from the 20 kinds of amino acids and the cognate tRNAThr from different tRNAs in order to generate Thr-tRNAThr. In general, an organism possesses one kind of gene corresponding to ThrRS. However, it has been recently found that some organisms have two different genes for ThrRS in the genome, suggesting that their proteins ThrRS-1 and ThrRS-2 function separately and complement each other in the threonylation of tRNAThr, one for catalysis and the other for trans-editing of misacylated Ser-tRNAThr. In order to clarify their three-dimensional structures, we performed X-ray analyses of two putatively assigned ThrRSs from Aeropyrum pernix (ApThrRS-1 and ApThrRS-2). These proteins were overexpressed in Escherichia coli, purified, and crystallized. The crystal structure of ApThrRS-1 has been successfully determined at 2.3 Å resolution. ApThrRS-1 is a dimeric enzyme composed of two identical subunits, each containing two domains for the catalytic reaction and for anticodon binding. The essential editing domain is completely missing as expected. These structural features reveal that ThrRS-1 catalyzes only the aminoacylation of the cognate tRNA, suggesting the necessity of the second enzyme ThrRS-2 for trans-editing. Since the N-terminal sequence of ApThrRS-2 is similar to the sequence of the editing domain of ThrRS from Pyrococcus abyssi, ApThrRS-2 has been expected to catalyze deaminoacylation of a misacylated serine moiety at the CCA terminus.  相似文献   

15.
16.
The addition of novel amino acids to the genetic code of Escherichia coli involves the generation of an aminoacyl-tRNA synthetase and tRNA pair that is ‘orthogonal’, meaning that it functions independently of the synthetases and tRNAs endogenous to E.coli. The amino acid specificity of the orthogonal synthetase is then modified to charge the corresponding orthogonal tRNA with an unnatural amino acid that is subsequently incorporated into a polypeptide in response to a nonsense or missense codon. Here we report the development of an orthogonal glutamic acid synthetase and tRNA pair. The tRNA is derived from the consensus sequence obtained from a multiple sequence alignment of archaeal tRNAGlu sequences. The glutamyl-tRNA synthetase is from the achaebacterium Pyrococcus horikoshii. The new orthogonal pair suppresses amber nonsense codons with an efficiency roughly comparable to that of the orthogonal tyrosine pair derived from Methanococcus jannaschii, which has been used to selectively incorporate a variety of unnatural amino acids into proteins in E.coli. Development of the glutamic acid orthogonal pair increases the potential diversity of unnatural amino acid structures that may be incorporated into proteins in E.coli.  相似文献   

17.
Pyrrolysine, the 22nd amino acid, is encoded by amber (TAG = UAG) codons in certain methanogenic archaea and bacteria. PylS, the pyrrolysyl-tRNA synthetase, ligates pyrrolysine to tRNAPyl for amber decoding as pyrrolysine. PylS and tRNAPyl have potential utility in making tailored recombinant proteins. Here, we probed interactions necessary for recognition of substrates by archaeal PylS via synthesis of close pyrrolysine analogs and testing their reactivity in amino acid activation assays. Replacement of the methylpyrroline ring of pyrrolysine with cyclopentane indicated that solely hydrophobic interactions with the ring-binding pocket of PylS are sufficient for substrate recognition. However, a 100-fold increase in the specificity constant of PylS was observed with an analog, 2-amino-6-((R)-tetrahydrofuran-2-carboxamido)hexanoic acid (2Thf-lys), in which tetrahydrofuran replaced the pyrrolysine methylpyrroline ring. Other analogs in which the electronegative atom was moved to different positions suggested PylS preference for a hydrogen-bond-accepting group at the imine nitrogen position in pyrrolysine. 2Thf-lys was a preferred substrate over a commonly employed pyrrolysine analog, but the specificity constant for 2Thf-lys was 10-fold lower than for pyrrolysine itself, largely due to the change in Km. The in vivo activity of the analogs in supporting UAG suppression in Escherichia coli bearing genes for PylS and tRNAPyl was similar to in vitro results, with l-pyrrolysine and 2Thf-lys supporting the highest amounts of UAG translation. Increasing concentrations of either PylS substrate resulted in a linear increase in UAG suppression, providing a facile method to assay bioactive pyrrolysine analogs. These results illustrate the relative importance of the H-bonding and hydrophobic interactions in the recognition of the methylpyrroline ring of pyrrolysine and provide a promising new series of easily synthesized pyrrolysine analogs that can serve as scaffolds for the introduction of novel functional groups into recombinant proteins.  相似文献   

18.
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase.Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques.Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry.Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary.  相似文献   

19.
The complete mitochondrial genome of Macrobrachium nipponense   总被引:1,自引:0,他引:1  
Ma K  Feng J  Lin J  Li J 《Gene》2011,487(2):160-165
The complete mitochondrial (mt) genome sequence plays an important role in the accurate determination of phylogenetic relationships among metazoans. Herein, we determined the complete mt genome sequence, structure and organization of Macrobrachium nipponense (M. nipponense) (GenBank ID: NC_015073.1) and compared it to that of Macrobrachium lanchesteri (M. lanchesteri) and Macrobrachium rosenbergii (M. rosenbergii). The 15,806 base pair (bp) M. nipponense mt genome, which is comprised of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs), is slightly larger than that of M. lanchesteri (15,694 bp, GenBank ID: NC_012217.1) and M. rosenbergii (15,772 bp, GenBank ID: NC_006880.1). The M. nipponense genome contains a high AT content (66.0%), which is a common feature among metazoan mt genomes. Compared with M. lanchesteri and M. rosenbergii, we found a peculiar non-coding region of 950 bp with a microsatellite-like (TA)6 element and many hairpin structures. The 13 PCGs are comprised of a total of 3707 codons, excluding incomplete termination codons, and the most frequently used amino acid is Leu (16.0%). The predicted start codons in the M. nipponense mt genome include ATG, ATC and ATA. Seven PCGs use TAA as a stop codon, whereas two use TAG, three use T and only one uses TA. Twenty-three of the genes are encoded on the L strand, and ND1, ND4, ND5, ND4L, 12S rRNA, 16S rRNA, tRNAHis, tRNAPro, tRNAPhe, tRNAVal, tRNAGln, tRNACys, tRNATyr and a tRNALeu are encoded on the H strand. The two rRNAs of M. nipponense and M. rosenbergii are encoded on the H strand, whereas the M. lanchesteri rRNAs are encoded on the L stand.  相似文献   

20.
Transfer RNAs are the most densely modified nucleic acid molecules in living cells. In Escherichia coli, more than 30 nucleoside modifications have been characterized, ranging from methylations and pseudouridylations to more complex additions that require multiple enzymatic steps. Most of the modifying enzymes have been identified, although a few notable exceptions include the 2′-O-methyltransferase(s) that methylate the ribose at the nucleotide 34 wobble position in the two leucyl isoacceptors tRNALeuCmAA and tRNALeucmnm5UmAA. Here, we have used a comparative genomics approach to uncover candidate E. coli genes for the missing enzyme(s). Transfer RNAs from null mutants for candidate genes were analyzed by mass spectrometry and revealed that inactivation of yibK leads to loss of 2′-O-methylation at position 34 in both tRNALeuCmAA and tRNALeucmnm5UmAA. Loss of YibK methylation reduces the efficiency of codon–wobble base interaction, as demonstrated in an amber suppressor supP system. Inactivation of yibK had no detectable effect on steady-state growth rate, although a distinct disadvantage was noted in multiple-round, mixed-population growth experiments, suggesting that the ability to recover from the stationary phase was impaired. Methylation is restored in vivo by complementing with a recombinant copy of yibK. Despite being one of the smallest characterized α/β knot proteins, YibK independently catalyzes the methyl transfer from S-adenosyl-L-methionine to the 2′-OH of the wobble nucleotide; YibK recognition of this target requires a pyridine at position 34 and N6-(isopentenyl)-2-methylthioadenosine at position 37. YibK is one of the last remaining E. coli tRNA modification enzymes to be identified and is now renamed TrmL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号