首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The human SBDS gene and its yeast ortholog SDO1 encode essential proteins that are involved in ribosome biosynthesis. SDO1 has been implicated in recycling of the ribosomal biogenesis factor Tif6p from pre-66S particles as well as in translation activation of 60S ribosomes. The SBDS protein is highly conserved, containing approximately 250 amino acid residues in animals, fungi and Archaea, while SBDS orthologs of plants and a group of protists contain an extended C-terminal region. In this work, we describe the characterization of the Trypanosoma cruzi SBDS ortholog (TcSBDS). TcSBDS co-fractionates with polysomes in sucrose density gradients, which is consistent with a role in ribosome biosynthesis. We show that TcSBDS contains a C-terminal extension of 200 amino acids that displays the features of intrinsically disordered proteins as determined by proteolytic, circular dichroism and NMR analyses. Interestingly, the C-terminal extension is responsible for TcSBDS–RNA interaction activity in electrophoretic mobility shift assays. This finding suggests that Trypanosomatidae and possibly also other organisms containing SBDS with extended C-terminal regions have evolved an additional function for SBDS in ribosome biogenesis.  相似文献   

2.
3.
A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold. The central domain has the common winged helix-turn-helix motif, and the C-terminal domain shares structural homology with known RNA-binding domains. Proteomic analysis of the SBDS sequence homologue in Saccharomyces cerevisiae, YLR022C, revealed an association with over 20 proteins involved in ribosome biosynthesis. NMR structural genomics revealed another yeast protein, YHR087W, to be a structural homologue of the AF0491 N-terminal domain. Sequence analysis confirmed them as distant sequence homologues, therefore related by divergent evolution. Synthetic genetic array analysis of YHR087W revealed genetic interactions with proteins involved in RNA and rRNA processing including Mdm20/Nat3, Nsr1, and Npl3. Our observations, taken together with previous reports, support the conclusion that SBDS and its homologues play a role in RNA metabolism.  相似文献   

4.

Background

Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown.

Results

We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner.

Conclusion

It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.  相似文献   

5.
Boocock GR  Marit MR  Rommens JM 《Genomics》2006,87(6):758-771
The Shwachman-Bodian-Diamond syndrome (SBDS) protein family occurs widely in nature, although its function has not been determined. Comprehensive database searches revealed SBDS homologues from 159 species, including examples from all sequenced archaeal and eukaryotic genomes and all eukaryotic kingdoms. Sequence alignment with ClustalX and MUSCLE algorithms led to the identification of conserved residues that occurred predominantly in the amino-terminal FYSH domain where they appeared to contribute to protein folding or stability. Only SBDS residue Gly91 was invariant in all species. Four distantly related protists were found to have two divergent SBDS genes in their genomes. In each case, phylogenetic analyses and the identification of shared sequence features suggested that one gene was derived from lateral gene transfer. We also identified a shared C-terminal zinc finger domain fusion in flowering plants and chromalveolates that may shed light on the function of the protein family and the evolutionary histories of these kingdoms. To assess the extent of SBDS functional conservation, we carried out complementation studies of SBDS homologues and interspecies chimeras in Saccharomyces cerevisiae. We determined that the FYSH domain was widely interchangeable among eukaryotes, while domain 2 imparted species specificity to protein function. Domain 3 was largely dispensable for function in our yeast complementation assay. Overall, the phylogeny of SBDS was shared with a group of proteins that were markedly enriched for RNA metabolism and/or ribosome-associated functions. These findings link Shwachman-Diamond syndrome to other bone marrow failure syndromes with defects in nucleolus-associated processes, including Diamond-Blackfan anemia, cartilage-hair hypoplasia, and dyskeratosis congenita.  相似文献   

6.
Yuichi Matsushima 《BBA》2009,1787(5):290-20499
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.  相似文献   

7.
8.
Rice Hoja Blanca Tenuivirus (RHBV), a negative strand RNA virus, has been identified to infect rice and is widely transmitted by the insect vector. NS3 protein encoded by RHBV RNA3 was reported to be a potent RNAi suppressor to counterdefense RNA silencing in plants, insect cells, and mammalian cells. Here, we report the crystal structure of the N-terminal domain of RHBV NS3 (residues 21–114) at 2.0 Å. RHBV NS3 N-terminal domain forms a dimer by two pairs of α-helices in an anti-parallel mode, with one surface harboring a shallow groove at the dimension of 20 Å × 30 Å for putative dsRNA binding. In vitro RNA binding assay and RNA silencing suppression assay have demonstrated that the structural conserved residues located along this shallow groove, such as Arg50, His51, Lys77, and His85, participate in dsRNA binding and RNA silencing suppression. Our results provide the initial structural implications in understanding the RNAi suppression mechanism by RHBV NS3.  相似文献   

9.
10.
The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the μ-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the μ-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the μ-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens.  相似文献   

11.
12.
RNA editing at four sites in eag, a Drosophila voltage-gated potassium channel, results in the substitution of amino acids into the final protein product that are not encoded by the genome. These sites and the editing alterations introduced are K467R (Site 1, top of the S6 segment), Y548C, N567D and K699R (sites 2–4, within the cytoplasmic C-terminal domain). We mutated these residues individually and expressed the channels in Xenopus oocytes. A fully edited construct (all four sites) has the slowest activation kinetics and a paucity of inactivation, whereas the fully unedited channel exhibits the fastest activation and most dramatic inactivation. Editing Site 1 inhibits steady-state inactivation. Mutating Site 1 to the neutral residues resulted in intermediate inactivation phenotypes and a leftward shift of the peak current-voltage relationship. Activation kinetics display a Cole-Moore shift that is enhanced by RNA editing. Normalized open probability relationships for 467Q, 467R and 467K are superimposable, indicating little effect of the mutations on steady-state activation. 467Q and 467R enhance instantaneous inward rectification, indicating a role of this residue in ion permeation. Intracellular tetrabutylammonium blocks 467K significantly better than 467R. Block by intracellular, but not extracellular, tetraethylammonium interferes with inactivation. The fraction of inactivated current is reduced at higher extracellular Mg+2 concentrations, and channels edited at Site 1 are more sensitive to changes in extracellular Mg+2 than unedited channels. These results show that even a minor change in amino acid side-chain chemistry and size can have a dramatic impact on channel biophysics, and that RNA editing is important for fine-tuning the channel’s function.  相似文献   

13.
The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.  相似文献   

14.
The solution structure of the human p47 SEP domain in a construct comprising residues G1-S2-p47(171-270) was determined by NMR spectroscopy. A structure-derived hypothesis about the domains' function was formulated and pursued in binding experiments with cysteine proteases. The SEP domain was found to be a reversible competitive inhibitor of cathepsin L with a Ki of 1.5 μM. The binding of G1-S2-p47(171-270) to cathepsin L was mapped by biochemical assays and the binding interface was investigated by NMR chemical shift perturbation experiments.  相似文献   

15.
16.
Shwachman-Diamond Syndrome (SDS) is an autosomal recessive disorder characterized by bone marrow failure with significant predisposition to the development of poor prognosis myelodysplasia and leukemia, exocrine pancreatic failure and metaphyseal chondrodysplasia. Although the SBDS gene mutated in this disorder is highly conserved in Archaea and all eukaryotes, the function is unknown. To interpret the molecular consequences of SDS-associated mutations, we have solved the crystal structure of the Archaeoglobus fulgidus SBDS protein orthologue at a resolution of 1.9 angstroms, revealing a three domain architecture. The N-terminal (FYSH) domain is the most frequent target for disease mutations and contains a novel mixed alpha/beta-fold identical to the single domain yeast protein Yhr087wp that is implicated in RNA metabolism. The central domain consists of a three-helical bundle, whereas the C-terminal domain has a ferredoxin-like fold. By genetic complementation analysis of the essential Saccharomyces cerevisiae SBDS orthologue YLR022C, we demonstrate an essential role in vivo for the FYSH domain and the central three-helical bundle. We further show that the common SDS-related K62X truncation is non-functional. Most SDS-related missense mutations that alter surface epitopes do not impair YLR022C function, but mutations affecting residues buried in the hydrophobic core of the FYSH domain severely impair or abrogate complementation. These data are consistent with absence of homozygosity for the common K62X truncation mutation in individuals with SDS, indicating that the SDS disease phenotype is a consequence of expression of hypomorphic SBDS alleles and that complete loss of SBDS function is likely to be lethal.  相似文献   

17.
Steroid receptor activator RNA protein (SRA1p) is the translation product of the bi-functional long non-coding RNA steroid receptor activator RNA 1 (SRA1) that is part of the steroid receptor coactivator-1 acetyltransferase complex and is indicated to be an epigenetic regulatory component. Previously, the SRA1p protein was suggested to contain an RNA recognition motif (RRM) domain. We have determined the solution structure of the C-terminal domain of human SRA1p by NMR spectroscopy. Our structure along with sequence comparisons among SRA1p orthologs and against authentic RRM proteins indicates that it is not an RRM domain but rather an all-helical protein with a fold more similar to the PRP18 splicing factor. NMR spectroscopy on the full SRA1p protein suggests that this structure is relevant to the native full-length context. Furthermore, molecular modeling indicates that this fold is well conserved among vertebrates. Amino acid variations in this protein seen across sequenced human genomes, including those in tumor cells, indicate that mutations that disrupt the fold occur vary rarely and highlight that its function is well conserved. SRA1p had previously been suggested to bind to the SRA1 RNA, but NMR spectra of SRA1p in the presence of its 80-nt RNA target suggest otherwise and indicate that this protein must be part of a multi-protein complex in order to recognize its proposed RNA recognition element.  相似文献   

18.
Ectrodactyly – ectodermal dysplasia and cleft lip/palate (EEC) syndrome (OMIM 604292) is a rare disorder determined by mutations in the TP63 gene. Most cases of EEC syndrome are associated to mutations in the DNA binding domain (DBD) region of the p63 protein. Here we report on a three-generation Brazilian family with three individuals (mother, son and grandfather) affected by EEC syndrome, determined by a novel mutation c.1037C > G (p.Ala346Gly). The disorder in this family exhibits a broad spectrum of phenotypes: two individuals were personally examined, one presenting the complete constellation of EEC syndrome manifestations and the other presenting an intermediate phenotype; the third affected, a deceased individual not examined personally and referred to by his daughter, exhibited only the split-hand/foot malformation (SHFM). Our findings contribute to elucidate the complex phenotype-genotype correlations in EEC syndrome and other related TP63-mutation syndromes. The possibility of the mutation c.1037C > G being related both to acro-dermato-ungual-lacrimal-tooth (ADULT) syndrome and SHFM is also raised by the findings here reported.  相似文献   

19.
MAGEL2 encodes the L2 member of the melanoma-associated antigen gene (MAGE) protein family, truncating mutations of which can cause Schaaf-Yang syndrome, an autism spectrum disorder. MAGEL2 is also inactivated in Prader–Willi syndrome, which overlaps clinically and mechanistically with Schaaf–Yang syndrome. Studies to date have only investigated the C-terminal portion of the MAGEL2 protein, containing the MAGE homology domain that interacts with RING-E3 ubiquitin ligases and deubiquitinases to form protein complexes that modify protein ubiquitination. In contrast, the N-terminal portion of the MAGEL2 protein has never been studied. Here, we find that MAGEL2 has a low-complexity intrinsically disordered N-terminus rich in Pro-Xn-Gly motifs that is predicted to mediate liquid–liquid phase separation to form biomolecular condensates. We used proximity-dependent biotin identification (BioID) and liquid chromatography–tandem mass spectrometry to identify MAGEL2-proximal proteins, then clustered these proteins into functional networks. We determined that coding mutations analogous to disruptive mutations in other MAGE proteins alter these networks in biologically relevant ways. Proteins identified as proximal to the N-terminal portion of MAGEL2 are primarily involved in mRNA metabolic processes and include three mRNA N 6-methyladenosine (m6A)-binding YTHDF proteins and two RNA interference-mediating TNRC6 proteins. We found that YTHDF2 coimmunoprecipitates with MAGEL2, and coexpression of MAGEL2 reduces the nuclear accumulation of YTHDF2 after heat shock. We suggest that the N-terminal region of MAGEL2 may have a role in RNA metabolism and in particular the regulation of mRNAs modified by m6A methylation. These results provide mechanistic insight into pathogenic MAGEL2 mutations associated with Schaaf–Yang syndrome and related disorders.  相似文献   

20.
Plastids (chloroplasts) of higher plants exhibit two types of conversional RNA editing: cytidine-to-uridine editing in mRNAs and adenosine-to-inosine editing in at least one plastid genome-encoded tRNA, the tRNA-Arg(ACG). The enzymes catalyzing RNA editing reactions in plastids are unknown. Here we report the identification of the A-to-I tRNA editing enzyme from chloroplasts of the model plant Arabidopsis thaliana. The protein (AtTadA) has an unusual structure in that it harbors a large N-terminal domain of >1000 amino acids, which is not required for catalytic activity. The C-terminal region of the protein displays sequence similarity to tadA, the tRNA adenosine deaminase from Escherichia coli. We show that AtTadA is imported into chloroplasts in vivo and demonstrate that the in vitro translated protein triggers A-to-I editing in the anticodon of the plastid tRNA-Arg(ACG). Suppression of AtTadA gene expression in transgenic Arabidopsis plants by RNAi results in reduced A-to-I editing in the chloroplast tRNA-Arg(ACG). The RNAi lines display a mild growth phenotype, presumably due to reduced chloroplast translational efficiency upon limited availability of edited tRNA-Arg(ACG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号