共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Schlatterer JC Kwok LW Lamb JS Park HY Andresen K Brenowitz M Pollack L 《Journal of molecular biology》2008,379(4):859-870
Cation-mediated RNA folding from extended to compact, biologically active conformations relies on a temporal balance of forces. The Mg2 +-mediated folding of the Tetrahymena thermophila ribozyme is characterized by rapid nonspecific collapse followed by tertiary-contact-induced compaction. This article focuses on an autonomously folding portion of the Tetrahymena ribozyme, its P4-P6 domain, in order to probe one facet of the rapid collapse: chain flexibility. The time evolution of P4-P6 folding was followed by global and local measures as a function of Mg2 + concentration. While all concentrations of Mg2 + studied are sufficient to screen the charge on the helices, the rates of compaction and tertiary contact formation diverge as the concentration of Mg2 + increases; collapse is greatly accelerated by Mg2 +, while tertiary contact formation is not. These studies highlight the importance of chain stiffness to RNA folding; at 10 mM Mg2 +, a stiff hinge limits the rate of P4-P6 folding. At higher magnesium concentrations, the rate-limiting step shifts from hinge bending to tertiary contact formation. 相似文献
3.
James V. OFallon Ronald W. Brosemer 《Biochimica et Biophysica Acta (BBA)/General Subjects》1977,499(3):321-328
α-Ketoglutarate : glyoxylate carboligase activity has been reported by other laboratories to be present in mitochondria and in the cytosol of mammalian tissues; the mitochondrial activity is associated with the α-ketoglutarate decarboxylase moiety of the α-ketoglutarate dehydrogenase complex. The cellular distribution of the carboligase has been re-examined here using marker enzymes of known localization in order to monitor the composition of subcellular fractions prepared by differential centrifugation. Carboligase activity paralleled the activity of the mitochondrial matrix enzyme citrate synthase in subcellular fractions prepared from rat liver, heart and brain as well as from rabbit liver. Whole rat liver mitochondria upon lysis released both carboligase and citrate synthase. The activity patterns of several other extramitochondrial marker enzymes differed significantly from that of carboligase in rat liver. In addition, the distribution pattern of carboligase was similar to that of α-ketoglutarate decarboxylase and of α-ketoglutarate dehydrogenase complex.The data indicate that α-ketoglutarate : gloxylate carboligase activity is located exclusively within the mitochondria of the rat and rabbit tissues investigated. There is no evidence for a cytosolic form of the enzyme. Thus the report from another laboratory that the molecular etiology of the human genetic disorder hyperoxaluria type I is a deficiency of cytosolic carboligase must be questioned. 相似文献
4.
The bacterial chromosome trafficking apparatus or the segrosome participates in the mitotic-like segregation of the chromosomes prior to cell division in several bacteria. ParB, which is the parS DNA-binding component of the segrosome, polymerizes on the parS-adjacent chromosome to form a nucleoprotein filament of unknown nature for the segregation function. We combined static light scattering, circular dichroism and small-angle X-ray scattering to present evidence that the apo form of the mycobacterial ParB forms an elongated dimer with intrinsically disordered regions as well as folded domains in solution. A comparison of the solution scattering of the apo and the parS-bound ParBs indicates a rather drastic compaction of the protein upon DNA binding. We propose that this binding-induced conformational transition is priming the ParB for polymerization on the DNA template. 相似文献
5.
Using a combination of intrinsic fluorescence to report ATP-induced rearrangements, quenched-flow to measure ATP hydrolysis "on-enzyme" and optical methods to probe the kinetics of product release, we have begun to dissect the process of energy transduction in the thermosome, a type II chaperonin from Thermoplasma acidophilum. Stoichiometric measurements of ATP binding reveal the tight association of eight nucleotide molecules per hexa-decamer, implying the filling of only one ring owing to strong negative cooperativity. After binding, we show that these eight ATP molecules are hydrolysed over the next 50 s, after which hydrolysis slows down markedly during the establishment of the steady state in the ATPase reaction, demonstrating that the kinetic system is off-rate limited. Looking in more detail, this rapid first-turnover can be dissected into two phases; the first occurring with a half-time of 0.8 s, the second with a half-time of 14 s, possibly reflecting the differential behaviour of the four alpha and four beta subunits in a single thermosome ring. To investigate the post-hydrolytic events, we used two heat-stable enzyme-linked optical assays to measure the rate of evolution of ADP and of phosphate from the thermosome active site. Neither product showed a rapid dissociation phase prior to the establishment of the steady state, showing that both are released slowly at a rate that limits the cycle. These data highlight the importance of the highly populated thermosome/ADP/Pi complex in the molecular mechanism. 相似文献
6.
7.
Fibrillin-rich microfibrils are the major structural components of the extracellular matrix that provide elasticity in a majority of connective tissues. The basis of elastic properties lies in the organization of fibrillin molecules, which, unfortunately, is still poorly understood. An X-ray diffraction study of hydrated fibrillin-rich microfibrils from zonular filaments has been conducted to give an insight into the molecular structure of microfibrils in intact tissue. A series of measurements was taken during controlled tissue extension to observe alterations in the lateral packing of microfibrils. Computer-generated simulated patterns were used to fit the experimental X-ray scattering data and to obtain the fibril diameter and lateral distance between the fibrils. The results suggest a nonlinear correlation between external strain and decrease in fibril diameter and lateral spacing. This was accompanied by a nonlinear increase in axial periodicity and a structure with a 160-nm periodicity, which is reported here for the first time using X-ray diffraction. These changes may reflect the unraveling of fibrillin from the complex folded arrangement into a linear structure. This finding supports a pleating model where fibrillin molecules are highly folded within the microfibrils; more importantly, the connection is made between the interaction of individual microfibrils and the change in their suprafibrillar coherent organization during extension. We suggest that the intermediate states observed in our study reflect sequential unfolding of fibrillin and can explain the process of its reversible unraveling. 相似文献
8.
Defining the shape, conformation, or assembly state of an RNA in solution often requires multiple investigative tools ranging from nucleotide analog interference mapping to X-ray crystallography. A key addition to this toolbox is small-angle X-ray scattering (SAXS). SAXS provides direct structural information regarding the size, shape, and flexibility of the particle in solution and has proven powerful for analyses of RNA structures with minimal requirements for sample concentration and volumes. In principle, SAXS can provide reliable data on small and large RNA molecules. In practice, SAXS investigations of RNA samples can show inconsistencies that suggest limitations in the SAXS experimental analyses or problems with the samples. Here, we show through investigations on the SAM-I riboswitch, the Group I intron P4-P6 domain, 30S ribosomal subunit from Sulfolobus solfataricus (30S), brome mosaic virus tRNA-like structure (BMV TLS), Thermotoga maritima asd lysine riboswitch, the recombinant tRNAval, and yeast tRNAphe that many problems with SAXS experiments on RNA samples derive from heterogeneity of the folded RNA. Furthermore, we propose and test a general approach to reducing these sample limitations for accurate SAXS analyses of RNA. Together our method and results show that SAXS with synchrotron radiation has great potential to provide accurate RNA shapes, conformations, and assembly states in solution that inform RNA biological functions in fundamental ways. 相似文献
9.
Lipfert J Das R Chu VB Kudaravalli M Boyd N Herschlag D Doniach S 《Journal of molecular biology》2007,365(5):1393-1406
Riboswitches are complex folded RNA domains found in noncoding regions of mRNA that regulate gene expression upon small molecule binding. Recently, Breaker and coworkers reported a tandem aptamer riboswitch (VCI-II) that binds glycine cooperatively. Here, we use hydroxyl radical footprinting and small-angle X-ray scattering (SAXS) to study the conformations of this tandem aptamer as a function of Mg(2+) and glycine concentration. We fit a simple three-state thermodynamic model that describes the energetic coupling between magnesium-induced folding and glycine binding. Furthermore, we characterize the structural conformations of each of the three states: In low salt with no magnesium present, the VCI-II construct has an extended overall conformation, presumably representing unfolded structures. Addition of millimolar concentrations of Mg(2+) in the absence of glycine leads to a significant compaction and partial folding as judged by hydroxyl radical protections. In the presence of millimolar Mg(2+) concentrations, the tandem aptamer binds glycine cooperatively. The glycine binding transition involves a further compaction, additional tertiary packing interactions and further uptake of magnesium ions relative to the state in high Mg(2+) but no glycine. Employing density reconstruction algorithms, we obtain low resolution 3-D structures for all three states from the SAXS measurements. These data provide a first glimpse into the structural conformations of the VCI-II aptamer, establish rigorous constraints for further modeling, and provide a framework for future mechanistic studies. 相似文献
10.
Nathan J. Baird Syed S. Zaheer Tao Pan Tobin R. Sosnick 《Journal of molecular biology》2010,397(5):1298-242
RNA folding occurs via a series of transitions between metastable intermediate states for Mg2+ concentrations below those needed to fold the native structure. In general, these folding intermediates are considerably less compact than their respective native states. Our previous work demonstrates that the major equilibrium intermediate of the 154-residue specificity domain (S-domain) of the Bacillus subtilis RNase P RNA is more extended than its native structure. We now investigate two models with falsifiable predictions regarding the origins of the extended intermediate structures in the S-domains of the B. subtilis and the Escherichia coli RNase P RNA that belong to different classes of P RNA and have distinct native structures. The first model explores the contribution of electrostatic repulsion, while the second model probes specific interactions in the core of the folding intermediate. Using small-angle X-ray scattering and Langevin dynamics simulations, we show that electrostatics plays only a minor role, whereas specific interactions largely account for the extended nature of the intermediate. Structural contacts in the core, including a nonnative base pair, help to stabilize the intermediate conformation. We conclude that RNA folding intermediates adopt extended conformations due to short-range, nonnative interactions rather than generic electrostatic repulsion of helical domains. These principles apply to other ribozymes and riboswitches that undergo functionally relevant conformational changes. 相似文献
11.
Ayumi Nakagawa Kazuki Moriya Mayuno Arita Yohei Yamamoto Kyotaro Kitamura Naoki Ishiguro Taro Kanzaki Toshihiko Oka Koki Makabe Kunihiro Kuwajima Masafumi Yohda 《Journal of molecular biology》2014
Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1–2 s after mixing. Only in the presence of K+ that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K+. Without K+, a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K+, a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins. 相似文献
12.
13.
Shape and subunit organisation of the DNA methyltransferase M.AhdI by small-angle neutron scattering 总被引:1,自引:0,他引:1
Type I restriction-modification (R-M) systems encode multisubunit/multidomain enzymes. Two genes (M and S) are required to form the methyltransferase (MTase) that methylates a specific base within the recognition sequence and protects DNA from cleavage by the endonuclease. The DNA methyltransferase M.AhdI is a 170 kDa tetramer with the stoichiometry M(2)S(2) and has properties typical of a type I MTase. The M.AhdI enzyme has been prepared with deuterated S subunits, to allow contrast variation using small-angle neutron scattering (SANS) methods. The SANS data were collected in a number of (1)H:(2)H solvent contrasts to allow matching of one or other of the subunits in the multisubunit enzyme. The radius of gyration (R(g)) and maximum dimensions (D(max)) of the M subunits in situ in the multisubunit enzyme (50 A and 190 A, respectively) are close of those of the entire MTase (51 A and 190 A). In contrast, the S subunits in situ have experimentally determined values of R(g)=35 A and D(max)=110 A, indicating their more central location in the enzyme. Ab initio reconstruction methods yield a low-resolution structural model of the shape and subunit organization of M.AhdI, in which the Z-shaped structure of the S subunit dimer can be discerned. In contrast, the M subunits form a much more elongated and extended structure. The core of the MTase comprises the two S subunits and the globular regions of the two M subunits, with the extended portion of the M subunits most probably forming highly mobile regions at the outer extremities, which collapse around the DNA when the MTase binds. 相似文献
14.
Stable RNAs must fold into specific three-dimensional structures to be biologically active, yet many RNAs form metastable structures that compete with the native state. Our previous time-resolved footprinting experiments showed that Azoarcus group I ribozyme forms its tertiary structure rapidly (τ < 30 ms) without becoming significantly trapped in kinetic intermediates. Here, we use stopped-flow fluorescence spectroscopy to probe the global folding kinetics of a ribozyme containing 2-aminopurine in the loop of P9. The modified ribozyme was catalytically active and exhibited two equilibrium folding transitions centered at 0.3 and 1.6 mM Mg2+, consistent with previous results. Stopped-flow fluorescence revealed four kinetic folding transitions with observed rate constants of 100, 34, 1, and 0.1 s− 1 at 37 °C. From comparison with time-resolved Fe(II)-ethylenediaminetetraacetic acid footprinting of the modified ribozyme under the same conditions, these folding transitions were assigned to formation of the IC intermediate, tertiary folding and docking of the nicked P9 tetraloop, reorganization of the P3 pseudoknot, and refolding of nonnative conformers, respectively. The footprinting results show that 50-60% of the modified ribozyme folds in less than 30 ms, while the rest of the RNA population undergoes slow structural rearrangements that control the global folding rate. The results show how small perturbations to the structure of the RNA, such as a nick in P9, populate kinetic folding intermediates that are not observed in the natural ribozyme. 相似文献
15.
Griffin MD Dobson RC Pearce FG Antonio L Whitten AE Liew CK Mackay JP Trewhella J Jameson GB Perugini MA Gerrard JA 《Journal of molecular biology》2008,380(4):691-703
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme in (S)-lysine biosynthesis and an important antibiotic target. All X-ray crystal structures solved to date reveal a homotetrameric enzyme. In order to explore the role of this quaternary structure, dimeric variants of Escherichia coli DHDPS were engineered and their properties were compared to those of the wild-type tetrameric form. X-ray crystallography reveals that the active site is not disturbed when the quaternary structure is disrupted. However, the activity of the dimeric enzymes in solution is substantially reduced, and a tetrahedral adduct of a substrate analogue is observed to be trapped at the active site in the crystal form. Remarkably, heating the dimeric enzymes increases activity. We propose that the homotetrameric structure of DHDPS reduces dynamic fluctuations present in the dimeric forms and increases specificity for the first substrate, pyruvate. By restricting motion in a key catalytic motif, a competing, non-productive reaction with a substrate analogue is avoided. Small-angle X-ray scattering and mutagenesis data, together with a B-factor analysis of the crystal structures, support this hypothesis and lead to the suggestion that in at least some cases, the evolution of quaternary enzyme structures might serve to optimise the dynamic properties of the protein subunits. 相似文献
16.
Carles Pons Marco D’Abramo Dmitri I. Svergun Pau Bernadó Juan Fernández-Recio 《Journal of molecular biology》2010,403(2):217-230
X-ray crystallography and NMR can provide detailed structural information of protein-protein complexes, but technical problems make their application challenging in the high-throughput regime. Other methods such as small-angle X-ray scattering (SAXS) are more promising for large-scale application, but at the cost of lower resolution, which is a problem that can be solved by complementing SAXS data with theoretical simulations. Here, we propose a novel strategy that combines SAXS data and accurate protein-protein docking simulations. The approach has been benchmarked on a large pool of known structures with synthetic SAXS data, and on three experimental examples. The combined approach (pyDockSAXS) provided a significantly better success rate (43% for the top 10 predictions) than either of the two methods alone. Further analysis of the influence of different docking parameters made it possible to increase the success rates for specific cases, and to define guidelines for improving the data-driven protein-protein docking protocols. 相似文献
17.
18.
Jinbu Wang Xiaobing Zuo Ping Yu Huan Xu Mary R. Starich Bruce A. Shapiro Yun-Xing Wang 《Journal of molecular biology》2009,393(3):717-772
We report a “top-down” method that uses mainly duplexes' global orientations and overall molecular dimension and shape restraints, which were extracted from experimental NMR and small-angle X-ray scattering data, respectively, to determine global architectures of RNA molecules consisting of mostly A-form-like duplexes. The method is implemented in the G2G (from global measurement to global structure) toolkit of programs. We demonstrate the efficiency and accuracy of the method by determining the global structure of a 71-nt RNA using experimental data. The backbone root-mean-square deviation of the ensemble of the calculated global structures relative to the X-ray crystal structure is 3.0 ± 0.3 Å using the experimental data and is only 2.5 ± 0.2 Å for the three duplexes that were orientation restrained during the calculation. The global structure simplifies interpretation of multidimensional nuclear Overhauser spectra for high-resolution structure determination. The potential general application of the method for RNA structure determination is discussed. 相似文献
19.
Makowski L Rodi DJ Mandava S Devarapalli S Fischetti RF 《Journal of molecular biology》2008,383(3):731-744
Wide-angle X-ray solution scattering (WAXS) patterns contain substantial information about the three-dimensional structure of a protein. Although WAXS data have far less information than is required for determination of a full three-dimensional structure, the actual amount of information contained in a WAXS pattern has not been carefully quantified. Here we carry out an analysis of the amount of information that can be extracted from a WAXS pattern and demonstrate that it is adequate to estimate the secondary-structure content of a protein and to strongly limit its possible tertiary structures. WAXS patterns computed from the atomic coordinates of a set of 498 protein domains representing all of known fold space were used as the basis for constructing a multidimensional space of all corresponding WAXS patterns (‘WAXS space’). Within WAXS space, each scattering pattern is represented by a single vector. A principal components analysis was carried out to identify those directions in WAXS space that provide the greatest discrimination among patterns. The number of dimensions that provide significant discrimination among protein folds agrees well with the number of independent parameters estimated from a naïve Shannon sampling theorem approach. Estimates of the relative abundances of secondary structures were made using training/test sets derived from this data set. The average error in the estimate of α-helical content was 11%, and of β-sheet content was 9%. The distribution of proteins that are members of the four structure classes, α, β, α/β and α+β, are well separated in WAXS space when data extending to a spacing of 2.2 Å are used. Quantification of the information embedded within a WAXS pattern indicates that these data can be used as a powerful constraint in homology modeling of protein structures. 相似文献