首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discrimination of Leishmaniainfantum and L. donovani, the members of the L. (L.) donovani complex, is important for diagnosis and epidemiological studies of visceral leishmaniasis (VL). We have developed two molecular tools including a restriction fragment length polymorphisms of amplified DNA (PCR-RFLP) and a PCR that are capable to discriminate L. donovani from L. infantum. Typing of the complex was performed by a simple PCR of cysteineproteaseB (cpb) gene followed by digestion with DraIII. The enzyme cuts the 741-bp amplicon of L. donovani into 400 and 341 bp fragments whereas the 702 bp of L. infantum remains intact. The designed PCR species-specific primer pair is specific for L. donovani and is capable of amplifying a 317 bp of 3’ end of cpb gene of L. donovani whereas it does not generate an amplicon for L. infantum. The species-specific primers and the restriction enzyme were designed based on a 39 bp insertion/deletion (indel) in the middle of the cpb gene. Both assays could differentiate correctly the two species and are reliable and high-throughput alternatives for molecular diagnosis and epidemiological studies of VL in various foci.  相似文献   

2.
The leishmaniases are infectious diseases caused by a number of species of obligate intracellular protozoa of the genus Leishmania with disease manifesting as cutaneous, mucocutaneous and visceral forms. Despite being endemic in more than 80 countries and its being the cause of high morbidity and mortality, leishmaniasis remains a neglected tropical disease. Chemotherapy is the frontline treatment, but drugs in current use suffer from toxic side effects, difficulties in administration and extended treatment times — moreover, resistance is emerging. New anti-leishmanial drugs are a recognised international priority. Here, we review investigations into N-myristoyltransferase (NMT) as a potential drug target. NMT catalyses the co-translational transfer of a C14 fatty acid from myristoyl-CoA onto the N-terminal glycine residue of a significant subset of proteins in eukaryotic cells. This covalent modification influences the stability and interactions of substrate proteins with lipids and partner proteins. Structure-guided development of new lead compounds emerging from high-throughput screening campaigns targeting Leishmania donovani NMT has led to the discovery of potent inhibitors which have been used to gain insights into the role of protein myristoylation in these parasites and to validate NMT as a drug target.  相似文献   

3.

Background

Leishmania donovani – the causative agent of visceral leishmaniasis – has several evolutionary characteristics that make the disease difficult to combat. Among these differences, a rare heterodimeric DNA topoisomerase IB has been reported thus opening a new promising field in the therapy of leishmaniasis. Several studies of the human enzyme have pointed to the importance of the linker domain in respect to camptothecin sensitivity. At present, it has been impossible to pinpoint the regions that make up the linker domain in Leishmania.

Methods

Several site-directed mutations as well as internal and linear truncations involving both subunits were assayed on both, relaxation activity and sensitivity to camptothecin.

Results

Truncations performed on the trypanosomatids conserved motif (RPPVVRS) of the small subunit of leishmanial DNA topoisomerase IB demonstrated that elimination of pentapeptide RPPVV produced a nonfunctional enzyme. However, the removal of the dipeptide RS led to an enzyme with reduced relaxation activity and less sensitivity to camptothecin. The basic structure, both sensitive to camptothecin and able to fully relax DNA, composed of amino acids 1–592 and 175–262 in the large and small subunits, respectively.

Conclusion

It has been established that the region between amino acids 175 and 180 (RPPVV) of the small subunit plays a pivotal role in both interaction with the large subunit and sensitivity to camptothecin in Leishmania.

General significance

The present report describes a functional analysis of the leishmanial DNA topoisomerase IB regions directly involved both in sensitivity to poisons and in the conformation of the linker domain.  相似文献   

4.
Visceral leishmaniasis is a vector-borne disease caused by an obligate intra-macrophage protozoan parasite Leishmania donovani. The molecular mechanisms involved in internalization of Leishmania are still poorly understood. Amphotericin B and its formulations are considered as the best existing drugs against visceral leishmaniasis and are being increasingly used. The reason for its antileishmanial activity is believed to be its ability to bind ergosterol found in parasite membranes. In case of in vivo amphotericin B treatment, both host macrophages and parasites are exposed to amphotericin B. The effect of amphotericin B treatment could therefore be due to a combination of its interaction with both sterols i.e., ergosterol of Leishmania and cholesterol of host macrophages. We report here that cholesterol complexation by amphotericin B markedly inhibits binding of L. donovani promastigotes to macrophages. These results represent one of the first reports on the effect of amphotericin B on the binding of Leishmania parasites to host macrophages. Importantly, these results offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies that employ sterol-complexing agents such as amphotericin B to treat leishmaniasis.  相似文献   

5.
Leishmania donovani, causative organism for visceral leishmaniasis, is responsible for considerable mortality and morbidity worldwide. Generation of drug-resistant variants continue to challenge the chemotherapy, the mainstay to fight the disease. The aim of current study was proteomic profiling of wild type (Ld-Wt) and arsenite-resistant (Ld-As20) L. donovani. Significant differences in protein profiles were observed between Ld-As20 and its parent Ld-Wt strain. Proteomic analysis of 158 spots from Ld-Wt and 144 spots from, Ld-As20 identified 77 and 74 protein entries, respectively, through MALDI-TOF/TOF based mass spectrometry and database search. A shift in the isoelectric point of few proteins was observed both in Ld-Wt and Ld-As20, which raises the possibility of continuous arsenite stress, resulting in the differences in the protein profiles of drug-resistant strain from its parent wild type strain. The comparative proteomic data holds the key for elucidation of the multifactorial and complex drug resistance mechanism, like arsenite resistance, in the parasite.  相似文献   

6.
Drug unresponsiveness in patients with visceral leishmaniasis (VL) is a problem in many endemic areas. This study aimed to determine genetic diversity of Leishmania donovani isolates from a VL endemic area in Sudan as a possible explanation for drug unresponsiveness in some patients. Thirty clinically stibogluconate (SSG)-sensitive isolates were made SSG-unresponsive in vitro by gradually increasing SSG concentrations. The sensitive isolates and their SSG-unresponsive counterparts were typed using mini-circle kDNA and categorized using PCR-RAPD. All the isolates were typed as L. donovani, the resulting PCR-RAPD characterization of the SSG-sensitive isolates gave three distinct primary genotypes while, the SSG-unresponsive isolates showed only a single band. L. donovani isolates from eastern Sudan are diverse; this probably resulted from emergence of new L. donovani strains during epidemics due to the pressure of widespread use of antimonials.In this communication the possible role of isolates diversity in antimonial unresponsiveness and the in vitro changing PCR-RAPD band pattern in SSG-unresponsive strains were discussed.  相似文献   

7.
The acquisition of immunity following subclinical or resolved infection with the intracellular parasite Leishmania donovani suggests that vaccination could prevent visceral leishmaniasis. The characteristics and in vitro stimulating capability of the recombinant proteins expressed by previously identified clones on the basis of their capacity to stimulate an indigenously established Leishmania-specific cell line leading to high level of IFN-γ suggested these to be potential candidates for immunoprophylaxis against leishmaniasis. In this study, we investigated the protective efficacy of purified recombinant proteins from two of the identified cDNA clones along with the adjuvant MPL, in a hamster model of experimental leishmaniasis. We demonstrate here that the immunization of animals with one of the recombinant proteins (rF14) having 97% similarity to C1 clone of L. chagasi ribosomal protein gene P0 (rLiP0) along with MPL provided partial protection against the virulent challenge of L. donovani. The absence of antigen-specific lymphoproliferative responses in these immunized animals may be responsible for the lack of complete and long-lasting protection.  相似文献   

8.
Leishmania infantum causes visceral leishmaniasis in all countries in the Mediterranean basin. It uses Phlebotomine sandflies as vectors where the promastigote stage develops, reproduces and becomes infective. Therefore the reproductive power of the promastigotes determines the inoculum size of the isolate. Ten Leishmania strains from Cyprus: two Leishmania donovani and eight L. infantum were used to study the proliferation capacity of the promastigotes. Population increase during a 6-day culture period was assessed quantitatively, by haematocytometer enumeration, and qualitatively by following the division history of each population during the same period by CFSE staining and flow cytometry. The strains exhibited different proliferation rates with L. infantum showing higher multiplication rates than L. donovani. These differences may represent their fitness capabilities and their ability to synchronize the multiplication activity of individual members in the population for the production of a sizeable inoculum in time for the vector’s blood meal.  相似文献   

9.
The chemical synthesis of UDP-6-NHAc-6-deoxy-Galf was performed and it led to the isolation of both pure anomers. They were then evaluated together with the previously prepared UDP-furanoses for their anti-parasitic properties against Leishmania donovani promastigotes, one of the agents responsible for visceral leishmaniasis. Amongst them, the unnatural 1,2-trans UDP-6-NHAc-Galf demonstrated a high potency in inhibiting the growth of the parasite.  相似文献   

10.
The parasitic protozoan, Leishmania, survives in harsh environments within its mammalian and sand fly hosts. Secreted proteins likely play critical roles in the parasite’s interactions with its environment. As a preliminary identification of the spectrum of potential excreted/secreted (ES) proteins of Leishmania infantum chagasi (Lic), a causative agent of visceral leishmaniasis, we used standard algorithms to screen the annotated L. infantum genome for genes whose predicted protein products have an N-terminal signal peptide and lack transmembrane domains and membrane anchors. A suite of 181 candidate ES proteins were identified. These included several that were documented in the literature to be released by other Leishmania spp. Six candidate ES proteins were selected for further validation of their expression and release by different parasite stages. We found both amastigote-specific and promastigote-specific released proteins. The ES proteins of Lic are candidates for future studies of parasite virulence determinants and host protective immunity.  相似文献   

11.
Reason for post-kala-azar dermal leishmaniasis (PKDL) is yet to be established. Earlier it was observed that morphology and biochemical properties of host peroxisomes were impaired during Leishmania infection. As peroxisome is known to be involved in various metabolic pathways to monitor normal function of the host cells, it is essential that Leishmania-induced dysfunction of this organelle should totally be repaired during treatment of visceral leishmaniasis (VL). In this paper it has been shown that resumption of normal peroxisomal function could not be attained when one of the existing drugs sodium antimony gluconate (SAG) was used for chemotherapy against VL. Although Leishmania parasite was found to be completely eliminated from host liver and spleen after SAG treatment, normal activities of peroxisomal catalase and superoxide dismutase could not be restored. Also unusual peptides were found to be present due to abnormal proteolytic cleavage of proteins. It is proposed that peroxisomal disorder which exists even after successful chemotherapy of VL may be figured out as one of the possible reasons to develop PKDL. It may also be pointed out that continued effect of peroxisomal disorder even after complete treatment of this parasitic disease may also lead to genetic disorders not yet been explored in post-kala-azar patients.  相似文献   

12.
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 α-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, α-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred α-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from α-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.  相似文献   

13.
Leishmaniasis is one of the world''s most neglected diseases, largely affecting the poorest of the poor, mainly in developing countries. Over 350 million people are considered at risk of contracting leishmaniasis, and approximately 2 million new cases occur yearly1. Leishmania donovani is the causative agent for visceral leishmaniasis (VL), the most fatal form of the disease. The choice of drugs available to treat leishmaniasis is limited 2;current treatments provide limited efficacy and many are toxic at therapeutic doses. In addition, most of the first line treatment drugs have already lost their utility due to increasing multiple drug resistance 3. The current pipeline of anti-leishmanial drugs is also severely depleted. Sustained efforts are needed to enrich a new anti-leishmanial drug discovery pipeline, and this endeavor relies on the availability of suitable in vitro screening models.In vitro promastigotes 4 and axenic amastigotes assays5 are primarily used for anti-leishmanial drug screening however, may not be appropriate due to significant cellular, physiological, biochemical and molecular differences in comparison to intracellular amastigotes. Assays with macrophage-amastigotes models are considered closest to the pathophysiological conditions of leishmaniasis, and are therefore the most appropriate for in vitro screening. Differentiated, non-dividing human acute monocytic leukemia cells (THP1) (make an attractive) alternative to isolated primary macrophages and can be used for assaying anti-leishmanial activity of different compounds against intracellular amastigotes.Here, we present a parasite-rescue and transformation assay with differentiated THP1 cells infected in vitro with Leishmania donovani for screening pure compounds and natural products extracts and determining the efficacy against the intracellular Leishmania amastigotes. The assay involves the following steps: (1) differentiation of THP1 cells to non-dividing macrophages, (2) infection of macrophages with L. donovani metacyclic promastigotes, (3) treatment of infected cells with test drugs, (4) controlled lysis of infected macrophages, (5) release/rescue of amastigotes and (6) transformation of live amastigotes to promastigotes. The assay was optimized using detergent treatment for controlled lysis of Leishmania-infected THP1 cells to achieve almost complete rescue of viable intracellular amastigotes with minimal effect on their ability to transform to promastigotes. Different macrophage:promastigotes ratios were tested to achieve maximum infection. Quantification of the infection was performed through transformation of live, rescued Leishmania amastigotes to promastigotes and evaluation of their growth by an alamarBlue fluorometric assay in 96-well microplates. This assay is comparable to the currently-used microscopic, transgenic reporter gene and digital-image analysis assays. This assay is robust and measures only the live intracellular amastigotes compared to reporter gene and image analysis assays, which may not differentiate between live and dead amastigotes. Also, the assay has been validated with a current panel of anti-leishmanial drugs and has been successfully applied to large-scale screening of pure compounds and a library of natural products fractions (Tekwani et al. unpublished).  相似文献   

14.
We evaluated the activity of methanolic extracts of Melaleuca cajuputi flowers against the filarial worm Brugia pahangi and its bacterial endosymbiont Wolbachia. Anti-Wolbachia activity was measured in worms and in Aedes albopictus Aa23 cells by PCR, electron microscopy, and other biological assays. In particular, microfilarial release, worm motility, and viability were determined. M. cajuputi flower extracts were found to significantly reduce Wolbachia endosymbionts in Aa23 cells, Wolbachia surface protein, and microfilarial release, as well as the viability and motility of adult worms. Anti-Wolbachia activity was further confirmed by observation of degraded and phagocytized Wolbachia in worms treated with the flower extracts. The data provided in vitro and in vivo evidence that M. cajuputi flower extracts inhibit Wolbachia, an activity that may be exploited as an alternative strategy to treat human lymphatic filariasis.  相似文献   

15.
In Ethiopia, visceral leishmaniasis (VL) is an increasing public health concern. Recently, a new outbreak of VL claimed the lives of hundreds of Ethiopians. Mapping its distribution and the identification of the causative Leishmania species is important for proper use of resources and for control planning. The choice of appropriate typing technique is the key for determining the infecting species. Here we compared three deoxyribonucleic acid (DNA) based markers. We used, for the first time, cpbE and cpbF (cpbE/F) PCR-RFLP and demonstrated that it clearly differentiates Leishmania donovani from Leishmania infantum. The cpbE/F PCR-RFLP gave identical banding pattern for all L. donovani strains irrespective of their geographic origin. With the K26 (primers) PCR-RFLP, the L. donovani strains gave a banding pattern different from L. infantum and showed variation with geographic origin. The Ethiopian isolates typed as L. donovani by the PCR-RFLP of the cpbE/F (gene) and K26 (primers) showed two types of patterns with the T2/B4 (primers) PCR-RFLP; one group with L. infantum-like and the other L. donovani-like pattern. Phylogenetic analysis using cpbE/F sequences showed variation with geographic origin of strains and the African strains of L. donovani are more distantly related to L. infantum. Moreover, the Ethiopian isolates were seen to be closely related to the Sudanese, Kenyan and Indian strains. Thus, we recommend the use of more than one marker to study the population genetics of L. donovani complex.  相似文献   

16.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the covalent attachment of myristate to the N-terminal of the glycine residue of various eukaryotic and viral proteins of diverse functions. Earlier, we have demonstrated that NMT activity is elevated in colon and gall bladder cancer. Attenuation of NMT activity may prove a novel therapeutic protocol for cancer. We report here a novel inhibitor protein of NMT being expressed in Escherichia coli cells containing the human NMT gene on increasing the incubation period from 5 to 24h. The inhibitor protein was purified by SP-Sepharose column chromatography, heat treatment, ammonium sulfate precipitation, and Superose 12 HR/30 FPLC column chromatography. The inhibitor protein had an apparent molecular mass of 10kDa by gel filtration. It inhibited human NMT in a concentration-dependent manner with 50% inhibition at 640+/-4.68nM. The inhibitor protein showed no direct interaction with myristoyl-CoA and demonstrated no demyristoylase or protease activity. Therefore, we conclude that the inhibitor protein acts directly on NMT.  相似文献   

17.
We showed previously that Entamoeba histolytica PIG-L exhibits a novel metal-independent albeit metal-stimulated activity. Using mutational and biochemical analysis, here we identify Asp-46 and His-140 of the enzyme as being important for catalysis. We show that these mutations neither affect the global conformational of the enzyme nor alter its metal binding affinity. The defect in catalysis, due to the mutations, is specifically due to an effect on Vmax and not due to altered substrate affinity (or Km). We propose a general acid-base pair mechanism to explain our results.  相似文献   

18.
N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-d-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-d-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-d-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117 ± 2 U mg−1 at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess.  相似文献   

19.
The covalent attachment of a 14-carbon aliphatic tail on a glycine residue of nascent translated peptide chains is catalyzed in human cells by two N-myristoyltransferase (NMT) enzymes using the rare myristoyl-CoA (C14-CoA) molecule as fatty acid donor. Although, NMT enzymes can only transfer a myristate group, they lack specificity for C14-CoA and can also bind the far more abundant palmitoyl-CoA (C16-CoA) molecule. We determined that the acyl-CoA binding protein, acyl-CoA binding domain (ACBD)6, stimulated the NMT reaction of NMT2. This stimulatory effect required interaction between ACBD6 and NMT2, and was enhanced by binding of ACBD6 to its ligand, C18:2-CoA. ACBD6 also interacted with the second human NMT enzyme, NMT1. The presence of ACBD6 prevented competition of the NMT reaction by C16-CoA. Mutants of ACBD6 that were either deficient in ligand binding to the N-terminal ACBD or unable to interact with NMT2 did not stimulate activity of NMT2, nor could they protect the enzyme from utilizing the competitor C16-CoA. These results indicate that ACBD6 can locally sequester C16-CoA and prevent its access to the enzyme binding site via interaction with NMT2. Thus, the ligand binding properties of the NMT/ACBD6 complex can explain how the NMT reaction can proceed in the presence of the very abundant competitive substrate, C16-CoA.  相似文献   

20.
Aminoaldehyde dehydrogenases (AMADHs, EC 1.2.1.19) belong to the large aldehyde dehydrogenase (ALDH) superfamily, namely, the ALDH9 family. They oxidize polyamine-derived ω-aminoaldehydes to the corresponding ω-amino acids. Here, we report the first X-ray structures of plant AMADHs: two isoenzymes, PsAMADH1 and PsAMADH2, from Pisum sativum in complex with β-nicotinamide adenine dinucleotide (NAD+) at 2.4 and 2.15 Å resolution, respectively. Both recombinant proteins are dimeric and, similarly to other ALDHs, each monomer is composed of an oligomerization domain, a coenzyme binding domain and a catalytic domain. Each subunit binds NAD+ as a coenzyme, contains a solvent-accessible C-terminal peroxisomal targeting signal (type 1) and a cation bound in the cavity close to the NAD+ binding site. While the NAD+ binding mode is classical for PsAMADH2, that for PsAMADH1 is unusual among ALDHs. A glycerol molecule occupies the substrate binding site and mimics a bound substrate. Structural analysis and substrate specificity study of both isoenzymes in combination with data published previously on other ALDH9 family members show that the established categorization of such enzymes into distinct groups based on substrate specificity is no more appropriate, because many of them seem capable of oxidizing a large spectrum of aminoaldehyde substrates. PsAMADH1 and PsAMADH2 can oxidize N,N,N-trimethyl-4-aminobutyraldehyde into γ-butyrobetaine, which is the carnitine precursor in animal cells. This activity highly suggests that in addition to their contribution to the formation of compatible osmolytes such as glycine betaine, β-alanine betaine and γ-aminobutyric acid, AMADHs might participate in carnitine biosynthesis in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号