首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the actin family of proteins exhibit different biochemical properties when ATP, ADP-Pi, ADP, or no nucleotide is bound. We used molecular dynamics simulations to study the effect of nucleotides on the behavior of actin and actin-related protein 3 (Arp3). In all of the actin simulations, the nucleotide cleft stayed closed, as in most crystal structures. ADP was much more mobile within the cleft than ATP, despite the fact that both nucleotides adopt identical conformations in actin crystal structures. The nucleotide cleft of Arp3 opened in most simulations with ATP, ADP, and no bound nucleotide. Deletion of a C-terminal region of Arp3 that extends beyond the conserved actin sequence reduced the tendency of the Arp3 cleft to open. When the Arp3 cleft opened, we observed multiple instances of partial release of the nucleotide. Cleft opening in Arp3 also allowed us to observe correlated movements of the phosphate clamp, cleft mouth, and barbed-end groove, providing a way for changes in the nucleotide state to be relayed to other parts of Arp3. The DNase binding loop of actin was highly flexible regardless of the nucleotide state. The conformation of Ser14/Thr14 in the P1 loop was sensitive to the presence of the γ-phosphate, but other changes observed in crystal structures were not correlated with the nucleotide state on nanosecond timescales. The divalent cation occupied three positions in the nucleotide cleft, one of which was not previously observed in actin or Arp2/3 complex structures. In sum, these simulations show that subtle differences in structures of actin family proteins have profound effects on their nucleotide-driven behavior.  相似文献   

2.
3.
The recently reported crystal structures of the membrane-embedded proton-dependent c-ring rotors of a cyanobacterial F1Fo ATP synthase and a chloroplast F1Fo ATP synthase have provided new insights into the mechanism of this essential enzyme. While the overall features of these c-rings are similar, a discrepancy in the structure and hydrogen-bonding interaction network of the H+ sites suggests two distinct binding modes, potentially reflecting a mechanistic differentiation. Importantly, the conformation of the key glutamate side chain to which the proton binds is also altered. To investigate the nature of these differences, we use molecular dynamics simulations of both c-rings embedded in a phospholipid membrane. We observe that the structure of the c15 ring from Spirulina platensis is unequivocally stable within the simulation time. By contrast, the proposed structure of the H+ site in the chloroplast c14 ring changes rapidly and consistently into that reported for the c15 ring, indicating that the latter represents a common binding mode. To assess this hypothesis, we have remodeled the c14 ring by molecular replacement using the published structure factors. The resulting structure provides clear evidence in support of a common binding site conformation and is also considerably improved statistically. These findings, taken together with a sequence analysis of c-subunits in the ATP synthase family, indicate that the so-called proton-locked conformation observed in the c15 ring may be a common characteristic not only of light-driven systems such as chloroplasts and cyanobacteria but also of a selection of other bacterial species.  相似文献   

4.
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.  相似文献   

5.
Atomic positions obtained by X-ray crystallography are time and space averages over many molecules in the crystal. Importantly, interatomic distances, calculated between such average positions and frequently used in structural and mechanistic analyses, can be substantially different from the more appropriate time-average and ensemble-average interatomic distances. Using crystallographic B-factors, one can deduce corrections, which have so far been applied exclusively to small molecules, to obtain correct average distances as a function of the type of atomic motion. Here, using 4774 high-quality protein X-ray structures, we study the significance of such corrections for different types of atomic motion. Importantly, we show that for distances shorter than 5 Å, corrections greater than 0.5 Å may apply, especially for noncorrelated or anticorrelated motion. For example, 14% of the studied structures have at least one pair of atoms with a correction of ≥ 0.5 Å in the case of noncorrelated motion. Using molecular dynamics simulations of villin headpiece, ubiquitin, and SH3 domain unit cells, we demonstrate that the majority of average interatomic distances in these proteins agree with noncorrelated corrections, suggesting that such deviations may be truly relevant. Importantly, we demonstrate that the corrections do not significantly affect stereochemistry and the overall quality of final refined X-ray structures, but can provide marked improvements in starting unrefined models obtained from low-resolution X-ray data. Finally, we illustrate the potential mechanistic and biological significance of the calculated corrections for KcsA ion channel and show that they provide indirect evidence that motions in its selectivity filter are highly correlated.  相似文献   

6.
Potassium channels are a diverse family of integral membrane proteins through which K+ can pass selectively. There is ongoing debate about the nature of conformational changes associated with the opening/closing and conductive/nonconductive states of potassium channels. The channels partly exert their function by varying their conductance through a mechanism known as C-type inactivation. Shortly after the activation of K+ channels, their selectivity filter stops conducting ions at a rate that depends on various stimuli. The molecular mechanism of C-type inactivation has not been fully understood yet. However, the X-ray structure of the KcsA channel obtained in the presence of low K+ concentration is thought to be representative of a K+ channel in the C-type inactivated state. Here, extensive, fully atomistic molecular dynamics and free-energy simulations of the low-K+ KcsA structure in an explicit lipid bilayer are performed to evaluate the stability of this structure and the selectivity of its binding sites. We find that the low-K+ KcsA structure is stable on the timescale of the molecular dynamics simulations performed, and that ions preferably remain in S1 and S4. In the absence of ions, the selectivity filter evolves toward an asymmetric architecture, as already observed in other computations of the high-K+ structure of KcsA and KirBac. The low-K+ KcsA structure is not permeable by Na+, K+, or Rb+, and the selectivity of its binding sites is different from that of the high-K+ structure.  相似文献   

7.
Native states of proteins are flexible, populating more than just the unique native conformation. The energetics and dynamics resulting from this conformational ensemble are inherently linked to protein function and regulation. Proteolytic susceptibility is one feature determined by this conformational energy landscape. As an attempt to investigate energetics of proteins on a proteomic scale, we challenged the Escherichia coli proteome with extensive proteolysis and determined which proteins, if any, have optimized their energy landscape for resistance to proteolysis. To our surprise, multiple soluble proteins survived the challenge. Maltose binding protein, a survivor from thermolysin digestion, was characterized by in vitro biophysical studies to identify the physical origin of proteolytic resistance. This experimental characterization shows that kinetic stability is responsible for the unusual resistance in maltose binding protein. The biochemical functions of the identified survivors suggest that many of these proteins may have evolved extreme proteolytic resistance because of their critical roles under stressed conditions. Our results suggest that under functional selection proteins can evolve extreme proteolysis resistance by modulating their conformational energy landscapes without the need to invent new folds, and that proteins can be profiled on a proteomic scale according to their energetic properties by using proteolysis as a structural probe.  相似文献   

8.
Archaeal A-ATP synthases catalyze the formation of the energy currency ATP. The chemical mechanisms of ATP synthesis in A-ATP synthases are unknown. We have determined the crystal structure of a transition-like state of the vanadate-bound form of catalytic subunit A (AVi) of the A-ATP synthase from Pyrococcus horikoshii OT3. Two orthovanadate molecules were observed in the AVi structure, one of which interacts with the phosphate binding loop through residue S238. The second vanadate is positioned in the transient binding site, implicating for the first time the pathway for phosphate entry to the catalytic site. Moreover, since residues K240 and T241 are proposed to be essential for catalysis, the mutant structures of K240A and T241A were also determined. The results demonstrate the importance of these two residues for transition-state stabilization. The structures presented shed light on the diversity of catalytic mechanisms used by the biological motors A- and F-ATP synthases and eukaryotic V-ATPases.  相似文献   

9.
Histone tail peptides comprise the flexible portion of chromatin, the substance which serves as the packaging for the eukaryotic genome. According to the histone code hypothesis, reader protein domains (chromodomains) can recognize modifications of amino acid residues within these peptides, regulating the expression of genes. We have performed simulations on models of chromodomain helicase DNA-binding protein 1 complexed with a variety of histone H3 modifications. Binding free energies for both the overall complexes and the individual residues within the protein and peptides were computed with molecular mechanics-generalized Born surface area. The simulation results agree well with experimental data and identify several chromodomain helicase DNA-binding protein 1 residues that play key roles in the interaction with each of the H3 modifications. We identified one class of protein residues that bind to H3 in all of the complexes (generally interacting hydrophobically), and a second class of residues that bind only to particular H3 modifications (generally interacting electrostatically). Additionally, we found that modifications of H3R2 and H3T3 have a dominant effect on the binding affinity; methylation of H3K4 has little effect on the interaction strength when H3R2 or H3T3 is modified. Our findings with regard to the specificity shown by the latter class of protein residues in their binding affinity to certain modifications of H3 support the histone code hypothesis.  相似文献   

10.
Mss116 is a Saccharomyces cerevisiae mitochondrial DEAD-box RNA helicase protein that is essential for efficient in vivo splicing of all group I and group II introns and for activation of mRNA translation. Catalysis of intron splicing by Mss116 is coupled to its ATPase activity. Knowledge of the kinetic pathway(s) and biochemical intermediates populated during RNA-stimulated Mss116 ATPase is fundamental for defining how Mss116 ATP utilization is linked to in vivo function. We therefore measured the rate and equilibrium constants underlying Mss116 ATP utilization and nucleotide-linked RNA binding. RNA accelerates the Mss116 steady-state ATPase ∼ 7-fold by promoting rate-limiting ATP hydrolysis such that inorganic phosphate (Pi) release becomes (partially) rate-limiting. RNA binding displays strong thermodynamic coupling to the chemical states of the Mss116-bound nucleotide such that Mss116 with bound ADP-Pi binds RNA more strongly than Mss116 with bound ADP or in the absence of nucleotide. The predominant biochemical intermediate populated during in vivo steady-state cycling is the strong RNA-binding Mss116-ADP-Pi state. Strong RNA binding allows Mss116 to fulfill its biological role in the stabilization of group II intron folding intermediates. ATPase cycling allows for transient population of the weak RNA-binding ADP state of Mss116 and linked dissociation from RNA, which is required for the final stages of intron folding. In cases where Mss116 functions as a helicase, the data collectively favor a model in which ATP hydrolysis promotes a weak-to-strong RNA binding transition that disrupts stable RNA duplexes. The subsequent strong-to-weak RNA binding transition associated with Pi release dissociates Mss116-RNA complexes, regenerating free Mss116.  相似文献   

11.
ATP synthase (F-ATPase) function depends upon catalytic and rotation cycles of the F1 sector. Previously, we found that F1 ATPase activity is inhibited by the dietary polyphenols, curcumin, quercetin, and piceatannol, but that the inhibitory kinetics of curcumin differs from that of the other two polyphenols (Sekiya et al., 2012, 2014). In the present study, we analyzed Escherichia coli F1 ATPase rotational catalysis to identify differences in the inhibitory mechanism of curcumin versus quercetin and piceatannol. These compounds did not affect the 120° rotation step for ATP binding and ADP release, though they significantly increased the catalytic dwell duration for ATP hydrolysis. Analysis of wild-type F1 and a mutant lacking part of the piceatannol binding site (γΔ277–286) indicates that curcumin binds to F1 differently from piceatannol and quercetin. The unique inhibitory mechanism of curcumin is also suggested from its effect on F1 mutants with defective β–γ subunit interactions (γMet23 to Lys) or β conformational changes (βSer174 to Phe). These results confirm that smooth interaction between each β subunit and entire γ subunit in F1 is pertinent for rotational catalysis.  相似文献   

12.
Tropomyosin (Tm) is a key factor in the molecular mechanisms that regulate the binding of myosin motors to actin filaments (F-Actins) in most eukaryotic cells. This regulation is achieved by the azimuthal repositioning of Tm along the actin (Ac):Tm:troponin (Tn) thin filament to block or expose myosin binding sites on Ac. In striated muscle, including involuntary cardiac muscle, Tm regulates muscle contraction by coupling Ca2 + binding to Tn with myosin binding to the thin filament. In smooth muscle, the switch is the posttranslational modification of the myosin. Depending on the activation state of Tn and the binding state of myosin, Tm can occupy the blocked, closed, or open position on Ac. Using native cryogenic 3DEM (three-dimensional electron microscopy), we have directly resolved and visualized cardiac and gizzard muscle Tm on filamentous Ac in the position that corresponds to the closed state. From the 8-Å-resolution structure of the reconstituted Ac:Tm filament formed with gizzard-derived Tm, we discuss two possible mechanisms for the transition from closed to open state and describe the role Tm plays in blocking myosin tight binding in the closed-state position.  相似文献   

13.
14.
Tryptophan fluorescence measurements were used to characterize the local dynamics of the highly conserved glycine-rich loop (GRL) of the mitochondrial processing peptidase (MPP) α-subunit in the presence of the substrate precursor. Reporter tryptophan residue was introduced into the GRL of the yeast α-MPP (Y299W) or at a proximal site (Y303W). Time-resolved and steady-state fluorescence spectroscopy demonstrated that for Trp299, the primary contact with the yeast malate dehydrogenase precursor evokes a change of the local GRL mobility. Moreover, time-resolved measurements showed that a functionless α-MPP with a single-residue deletion in the loop (Y303W/ΔG292) is defective particularly in the primary contact with substrate. Thus, the GRL was proved to be part of a contact site of the enzyme specifically recognizing the substrate. Regarding the surface exposure and presence of the hydrophobic patches within the GRL, we proposed a functional analogy between the presequence recognition by the hydrophobic binding groove of the Tom20 mitochondrial import receptor and the GRL of the α-MPP. A molecular dynamics (MD) simulation of the MPP-substrate peptide complex model was employed to test this hypothesis. The initial positioning and conformation of the substrate peptide in the model fitting were chosen based on the analogy of its interaction with the Tom20 binding groove. MD simulation confirmed the stability of the proposed interaction and showed also a decrease in GRL flexibility in the presence of substrate, in agreement with fluorescence measurements. Moreover, conserved substrate hydrophobic residues in positions + 1 and − 4 to the cleavage site remain in close contact with the side chains of the GRL during the entire production part of MD simulation as stabilizing points of the hydrophobic interaction. We conclude that the GRL of the MPP α-subunit is the crucial evolutional outcome of the presequence recognition by MPP and represents a functional parallel with Tom20 import receptor.  相似文献   

15.
Using the MP1-p14 scaffolding complex from the mitogen-activated protein kinase signaling pathway as model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. Hot spots are located by virtual alanine-scanning consensus predictions over three different energy functions and two different single-structure representations of the complex. Refined binding affinity predictions for select hot-spot mutations are carried out by applying first-principle methods such as the molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy (SIE) to the molecular dynamics (MD) trajectories for mutated and wild-type complexes. Here, predicted hot-spot residues were actually mutated to alanine, and crystal structures of the mutated complexes were determined. Two mutated MP1-p14 complexes were investigated, the p14(Y56A)-mutated complex and the MP1(L63A,L65A)-mutated complex. Alternative ways to generate MD ensembles for mutant complexes, not relying on crystal structures for mutated complexes, were also investigated. The SIE function, fitted on protein-ligand binding affinities, gave absolute binding affinity predictions in excellent agreement with experiment and outperformed standard MM-GBSA predictions when tested on the MD ensembles of Ras-Raf and Ras-RalGDS protein-protein complexes. For wild-type and mutant MP1-p14 complexes, SIE predictions of relative binding affinities were supported by a yeast two-hybrid assay that provided semiquantitative relative interaction strengths. Results on the MP1-mutated complex suggested that SIE predictions deteriorate if mutant MD ensembles are approximated by just mutating the wild-type MD trajectory. The SIE data on the p14-mutated complex indicated feasibility for generating mutant MD ensembles from mutated wild-type crystal structure, despite local structural differences observed upon mutation. For energetic considerations, this would circumvent costly needs to produce and crystallize mutated complexes. The sensitized protein-protein interface afforded by the p14(Y56A) mutation identified here has practical applications in screening-based discovery of first-generation small-molecule hits for further development into specific modulators of the mitogen-activated protein kinase signaling pathway.  相似文献   

16.
Cofilin is a key actin-binding protein that is critical for controlling the assembly of actin within the cell. Here, we present the results of molecular docking and dynamics studies using a muscle actin filament and human cofilin I. Guided by extensive mutagenesis results and other biophysical and structural studies, we arrive at a model for cofilin bound to the actin filament. This predicted structure agrees very well with electron microscopy results for cofilin-decorated filaments, provides molecular insight into how the known F- and G-actin sites on cofilin interact with the filament, and also suggests new interaction sites that may play a role in cofilin binding. The resulting atomic-scale model also helps us understand the molecular function and regulation of cofilin and provides testable data for future experimental and simulation work.  相似文献   

17.
Eight mutants of the DhaA haloalkane dehalogenase carrying mutations at the residues lining two tunnels, previously observed by protein X-ray crystallography, were constructed and biochemically characterized. The mutants showed distinct catalytic efficiencies with the halogenated substrate 1,2,3-trichloropropane. Release pathways for the two dehalogenation products, 2,3-dichloropropane-1-ol and the chloride ion, and exchange pathways for water molecules, were studied using classical and random acceleration molecular dynamics simulations. Five different pathways, denoted p1, p2a, p2b, p2c, and p3, were identified. The individual pathways showed differing selectivity for the products: the chloride ion releases solely through p1, whereas the alcohol releases through all five pathways. Water molecules play a crucial role for release of both products by breakage of their hydrogen-bonding interactions with the active-site residues and shielding the charged chloride ion during its passage through a hydrophobic tunnel. Exchange of the chloride ions, the alcohol product, and the waters between the buried active site and the bulk solvent can be realized by three different mechanisms: (i) passage through a permanent tunnel, (ii) passage through a transient tunnel, and (iii) migration through a protein matrix. We demonstrate that the accessibility of the pathways and the mechanisms of ligand exchange were modified by mutations. Insertion of bulky aromatic residues in the tunnel corresponding to pathway p1 leads to reduced accessibility to the ligands and a change in mechanism of opening from permanent to transient. We propose that engineering the accessibility of tunnels and the mechanisms of ligand exchange is a powerful strategy for modification of the functional properties of enzymes with buried active sites.  相似文献   

18.
Misfolding of the prion protein (PrP) is associated with the development of Transmissible Spongiform Encephalopathies. The recent crystal structure of ‘steric zipper’ aggregates of the peptide SNQNNF (human PrP fragment 170-175) has highlighted its potential involvement in the misfolding process. A detailed molecular dynamics investigation on SNQNNF aggregates has been performed to analyze the behavior of the assemblies in a non-crystalline context. Stability, dynamics, and structural features suggest that SNQNNF assemblies are very good candidates to be involved in the structure of PrP fibrils. In addition, the analysis of small aggregates shows that steric zipper interfaces are able to stabilize assemblies composed of four strands per sheet. Altogether, the present findings indicate that steric zipper may play a key role in prion diseases. This suggestion is also corroborated by MD analyses of point mutations within the region 170-175.  相似文献   

19.
Recognition of the human immunodeficiency virus Rev-responsive element (RRE) RNA by the Rev protein is an essential step in the viral life cycle. Formation of the Rev-RRE complex signals nucleocytoplasmic export of unspliced and partially spliced viral RNA. Essential components of the complex have been localized to a minimal arginine-rich Rev peptide and stem IIB of RRE. In vitro selection studies have identified a synthetic peptide known as RSG 1.2 that binds with better specificity and affinity to RRE than the Rev peptide. NMR structures of both peptide-RNA complexes of Rev and RSG 1.2 bound to RRE stem IIB have been solved and reveal gross structural differences between the two bound complexes. Molecular dynamics simulations of the Rev and RSG 1.2 peptides in complex with RRE stem IIB have been simulated to better understand on an atomic level how two arginine-rich peptides of similar length recognize the same sequence of RNA with such different structural motifs. While the Rev peptide employs some base-specific hydrogen bonding for recognition of RRE, shape recognition, through contact with the sugar-phosphate backbone, and cation-pi interactions are also important. Molecular dynamics simulations suggest that RSG 1.2 binds more tightly to the RRE sequence than Rev by forming more base-specific contacts, using water to mediate peptide-RNA contacts, and is held in place by a strong salt bridge network spanning the major groove of the RNA.  相似文献   

20.
Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin cross-linking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号