首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human leukocyte antigen (HLA)-E is a non-classical major histocompatibility complex class I molecule that binds peptides derived from the leader sequences of other HLA class I molecules. Natural killer cell recognition of these HLA-E molecules, via the CD94-NKG2 natural killer family, represents a central innate mechanism for monitoring major histocompatibility complex expression levels within a cell. The leader sequence-derived peptides bound to HLA-E exhibit very limited polymorphism, yet subtle differences affect the recognition of HLA-E by the CD94-NKG2 receptors. To better understand the basis for this peptide-specific recognition, we determined the structure of HLA-E in complex with two leader peptides, namely, HLA-Cw*07 (VMAPRALLL), which is poorly recognised by CD94-NKG2 receptors, and HLA-G*01 (VMAPRTLFL), a high-affinity ligand of CD94-NKG2 receptors. A comparison of these structures, both of which were determined to 2.5-Å resolution, revealed that allotypic variations in the bound leader sequences do not result in conformational changes in the HLA-E heavy chain, although subtle changes in the conformation of the peptide within the binding groove of HLA-E were evident. Accordingly, our data indicate that the CD94-NKG2 receptors interact with HLA-E in a manner that maximises the ability of the receptors to discriminate between subtle changes in both the sequence and conformation of peptides bound to HLA-E.  相似文献   

2.
HLA-G is a non-classical HLA class Ib molecule primarily expressed in trophoblast cells, and is thought to play a key role in the induction of materno-fetal tolerance during pregnancy. In addition, the HLA-G gene provides a suitable leader sequence peptide capable of binding to HLA-E. However, the existence of placentas homozygous for the HLA-G*0105N null allele suggests that HLA-G1 might not be essential for fetal survival. To investigate whether expression of the HLA-G*0105N allele supports HLA-E cell surface expression, we transfected the HLA-G*0105N gene into JAR trophoblast cells. Flow cytometry analysis showed that HLA-G*0105N-transfected cells express surface HLA-E to a similar extent as the unmutated HLA-G gene, whereas HLA-G1 cell surface expression was undetectable. Using the NKL cell line in a standard 51Cr release assay, the HLA-E molecules were found to inhibit natural killer lysis, through a mechanism partially dependent on CD94/NKG2A-mediated recognition.F.G. Sala and P-M. Del Moral contributed equally to this work.  相似文献   

3.
The primary function of the monomorphic MHC class Ib molecule Qa-1(b) is to present peptides derived from the leader sequences of other MHC class I molecules for recognition by the CD94-NKG2 receptors expressed by NK and T cells. Whereas the mode of peptide presentation by its ortholog HLA-E, and subsequent recognition by CD94-NKG2A, is known, the molecular basis of Qa-1(b) function is unclear. We have assessed the interaction between Qa-1(b) and CD94-NKG2A and shown that they interact with an affinity of 17 μM. Furthermore, we have determined the structure of Qa-1(b) bound to the leader sequence peptide, Qdm (AMAPRTLLL), to a resolution of 1.9 ? and compared it with that of HLA-E. The crystal structure provided a basis for understanding the restricted peptide repertoire of Qa-1(b). Whereas the Qa-1(b-AMAPRTLLL) complex was similar to that of HLA-E, significant sequence and structural differences were observed between the respective Ag-binding clefts. However, the conformation of the Qdm peptide bound by Qa-1(b) was very similar to that of peptide bound to HLA-E. Although a number of conserved innate receptors can recognize heterologous ligands from other species, the structural differences between Qa-1(b) and HLA-E manifested in CD94-NKG2A ligand recognition being species specific despite similarities in peptide sequence and conformation. Collectively, our data illustrate the structural homology between Qa-1(b) and HLA-E and provide a structural basis for understanding peptide repertoire selection and the specificity of the interaction of Qa-1(b) with CD94-NKG2 receptors.  相似文献   

4.
The T‐cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T‐lymphocytes, with each chain of the TCR comprising three complementarity‐determining regions (CDRs) that collectively form the antigen‐binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR‐pMHC interaction is crucially important in cell‐mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR‐pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T‐cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC‐related molecules that instead of presenting peptides are ideally suited to bind lipid‐based antigens. Structural studies within the CD1‐lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1‐lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC‐like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.  相似文献   

5.
The leukocyte Ig-like receptor (LILR/ILT/LIR) family comprises 13 members that are either activating or inhibitory receptors, regulating a broad range of cells in the immune responses. LILRB1 (ILT2), LILRB2 (ILT4) and LILRA1 (LIR6) can recognize MHC (major histocompatibility complex) class I or class I-like molecules, and LILRB1/HLA-A2, LILRB1/UL18 and LILRB2/HLA-G complex (extracellular domains D1D2) structures have been solved recently. The details of binding to MHC have been described. Despite high levels of sequence similarity among LILRA1, LILRA2 (ILT1), LILRA3 (ILT6) and LILRB1/B2, all earlier experiments showed that LILRA2 does not bind to MHC, but the reason is unknown. Here, we report the LILRA2 extracellular D1D2 domain crystal structure at 2.6 Å resolution, which reveals structural shifts of the corresponding MHC-binding amino acid residues in comparison with LILR B1/B2, explaining its non-binding to MHC molecules. We identify some key residues with great influence on the local structure, which exist only in the MHC-binding receptors. Moreover, we show that LILRA2 forms a domain-swapped dimer. Further work with these key swapping residues yields a monomeric form, confirming that the domain-swapping is primarily amino acid sequence-specific. The structure described here supports the dimer conformation in solution observed earlier, and implies a stress-induced regulation by dimerization, consistent with its function as a heat shock promoter.  相似文献   

6.
Tapasin plays an important role in the quality control of major histocompatibility complex (MHC) class I assembly, but its precise function in this process remains controversial. Whether tapasin participates in the assembly of HLA-G has not been studied. HLA-G, an MHC class Ib molecule that binds a more restricted set of peptides than class Ia molecules, is a particularly interesting molecule, because during assembly, it recycles between the endoplasmic reticulum (ER) and the cis-Golgi until it is loaded with a high affinity peptide. We have taken advantage of this unusual trafficking property of HLA-G and its requirement for high affinity peptides to demonstrate that a critical function of tapasin is to transform class I molecules into a high affinity, peptide-receptive form. In the absence of tapasin, HLA-G molecules cannot bind high affinity peptides, and an abundant supply of peptides cannot overcome the tapasin requirement for high affinity peptide loading. The addition of tapasin renders HLA-G molecules capable of loading high affinity peptides and of transporting to the surface, suggesting that tapasin is a prerequisite for the binding of high-affinity ligands. Interestingly, the "tapasin-dependent" HLA-G molecules are not empty in the absence of tapasin but are in fact associated with suboptimal peptides and continue to recycle between the ER and the cis-Golgi. Together with the finding that empty HLA-G heterodimers are strictly retained in the ER and degraded, our data suggest that MHC class I molecules bind any available peptides to avoid ER-mediated degradation and that the peptides are in turn replaced by higher affinity peptides with the aid of tapasin.  相似文献   

7.
In this study we focused on the structure and expression of the HLA-E, F, and G class I complexes in placental tissue. Structural analysis included an examination of the peptides bound to soluble and membrane forms of the HLA-G complex isolated directly from placenta. An important distinction was observed from HLA-G bound peptides previously isolated from transfectant cells. Thus, the number of distinct moieties bound to placental-derived proteins was substantially lower than that bound to transfectant-derived HLA-G. Indeed, a single peptide species derived from a cytokine-related protein alone accounted for 15% of the molar ratio of HLA-G bound peptide. To further examine HLA-E and its potential to bind peptide, notably that derived from HLA-G, we combined new Abs to examine expression in placental tissues for all the known forms of the nonclassical class I molecules. Whereas membrane HLA-G was found in extravillous trophoblasts, soluble HLA-G was found in all placental trophoblasts, including villous cytotrophoblasts and syncitiotrophoblasts. Further, HLA-E was found in all cells that expressed either form of HLA-G, consistent with HLA-E being complexed with the HLA-G signal sequence-derived nonamer in these cells. Finally, using new reagents specific for HLA-F, a restricted pattern of expression was observed, primarily on extravillous trophoblasts that had invaded the maternal decidua. Comparative staining indicated that HLA-F was on the surface of these cells, defining them as the first to demonstrate surface expression of this Ag and the first cell type identified to express all three nonclassical HLA class I Ags simultaneously.  相似文献   

8.
Association between the class II major histocompatibility complex (MHC) and the class II invariant chain-associated peptide (CLIP) occurs naturally as an intermediate step in the MHC class II processing pathway. Here, we report the crystal structure of the murine class II MHC molecule I-A(b) in complex with human CLIP at 2.15A resolution. The structure of I-A(b) accounts, via the peptide-binding groove's unique physicochemistry, for the distinct peptide repertoire bound by this allele. CLIP adopts a similar conformation to peptides bound by other I-A alleles, reinforcing the notion that CLIP is presented as a conventional peptide antigen. When compared to the related HLA-DR3/CLIP complex structure, the CLIP peptide displays a slightly different conformation and distinct interaction pattern with residues in I-A(b). In addition, after examining the published sequences of peptides presented by I-A(b), we discuss the possibility of predicting peptide alignment in the I-A(b) binding groove using a simple scoring matrix.  相似文献   

9.
HLA-E is the first human class Ib major histocompatibility complex molecule to be crystallized. HLA-E is highly conserved and almost nonpolymorphic, and has recently been shown to be the first specialized ligand for natural killer cell receptors. In functional studies, HLA-E is unlike the class Ia MHC molecules in having tightly restricted peptide binding specificity. HLA-E binds a limited set of almost identical leader sequence peptides derived from class Ia molecules and presents these at the cell surface for recognition by natural killer cell receptors. We now show that the extracellular region of HLA-E forms a stable complex with beta2 microglobulin and can be refolded around synthetic peptide. Crystals of this complex formed slowly over four to six months in the presence of ammonium sulphate. The crystals diffract to 2.85 A with space group P3(1)21 and unit cell dimensions a = 182.2 A, b = 182.2 A, c = 88.4 A.  相似文献   

10.
Natural killer (NK) cells are innate lymphocytes that participate in the early control of viruses and tumors. The function of NK cells is under tight regulation by two complementary inhibitory receptor families that bind to classical and non-classical HLA class I molecules: the CD94/NKG2A receptors and the killer cell immunoglobulin-like receptors (KIRs). In this mini-review, recent data on the structure of human NK cell receptor repertoires and its relation to functional responses and tolerance to self are discussed. We propose that no active selection is required to generate diverse NK cell repertoires characterized by a dominant expression of receptors with specificity for self-HLA class I. Instead, the primary consequence of interactions with HLA class I molecules is a functional tuning of randomly generated NK cell repertoires.  相似文献   

11.
Peptide binding to class I major histocompatibility complex (MHCI) molecules is a key step in the immune response and the structural details of this interaction are of importance in the design of peptide vaccines. Algorithms based on primary sequence have had success in predicting potential antigenic peptides for MHCI, but such algorithms have limited accuracy and provide no structural information. Here, we present an algorithm, PePSSI (peptide-MHC prediction of structure through solvated interfaces), for the prediction of peptide structure when bound to the MHCI molecule, HLA-A2. The algorithm combines sampling of peptide backbone conformations and flexible movement of MHC side chains and is unique among other prediction algorithms in its incorporation of explicit water molecules at the peptide-MHC interface. In an initial test of the algorithm, PePSSI was used to predict the conformation of eight peptides bound to HLA-A2, for which X-ray data are available. Comparison of the predicted and X-ray conformations of these peptides gave RMSD values between 1.301 and 2.475 A. Binding conformations of 266 peptides with known binding affinities for HLA-A2 were then predicted using PePSSI. Structural analyses of these peptide-HLA-A2 conformations showed that peptide binding affinity is positively correlated with the number of peptide-MHC contacts and negatively correlated with the number of interfacial water molecules. These results are consistent with the relatively hydrophobic binding nature of the HLA-A2 peptide binding interface. In summary, PePSSI is capable of rapid and accurate prediction of peptide-MHC binding conformations, which may in turn allow estimation of MHCI-peptide binding affinity.  相似文献   

12.
Previously the hexapeptide motif FXNPXY807 in the cytoplasmic tail of the LDL receptor was shown to be essential for clustering in clathrin-coated pits. We used nuclear magnetic resonance line-broadening and transferred nuclear Overhauser effect measurements to identify the molecule in the clathrin lattice that interacts with this hexapeptide, and determined the structure of the bound motif. The wild-type peptide bound in a single conformation with a reverse turn at residues NPVY. Tyr807Ser, a peptide that harbors a mutation that disrupts receptor clustering, displayed markedly reduced interactions. Clustering motif peptides interacted with clathrin cages assembled in the presence or absence of AP2, with recombinant clathrin terminal domains, but not with clathrin hubs. The identification of terminal domains as the primary site of interaction for FXNPXY807 suggests that adaptor molecules are not required for receptor-mediated endocytosis of LDL, and that at least two different tyrosine-based internalization motifs exist for clustering receptors in coated pits.  相似文献   

13.
Noa Stanietsky 《FEBS letters》2010,584(24):4895-4900
Human natural killer (NK) cells possess an arsenal of receptors programmed to regulate the NK cell functions, once encountering a target cell. In general, the activating receptors mediate cytotoxicity when engaged by their tumor specific, stress induced, virally encoded, or rarely, self ligands. Whereas, the inhibitory receptors bind self molecules, mostly MHC class I, presented on all normal and healthy nucleated cells. However, NK cells also possess numerous, highly homologous, pairs of receptors that sometimes even share the same ligands but display divergent functions. In this review we describe the NK cell repertoire of paired receptors and discuss questions regarding their function and mode of action. We focus primarily on the three PVR-binding receptors; the co-stimulatory DNAM1 and CD96 and the inhibitory TIGIT.  相似文献   

14.
Chemokines are key mediators of leukocyte recruitment during pathogenic insult and also play a prominent role in homeostasis. While most chemokine receptors bind to multiple chemokines, CCR6 is unique in that this receptor is one of only a few that can bind only a single chemokine ligand, CCL20. CCR6 is an important receptor that is involved in regulating several aspects of mucosal immunity, including the ability to mediate the recruitment of immature dendritic cells (DCs) and mature DCs, and professional antigen presenting cells (APCs) to the sites of epithelial inflammation. Further, CCR6 mediates the homing of both CD4+ T (T-helper; Th) cells and DCs to the gut mucosal lymphoid tissue. DCs, which are known to be essential immune cells in innate immunity and in the initiation of adaptive immunity, play a central role in initiating a primary immune response. Herein, we summarize the role of CCR6 in immune responses at epithelial and mucosal sites in both the lung and gut based on a review of the current literature.  相似文献   

15.
Natural killer (NK) cells play a vital role in the detection and elimination of virally infected and tumor cells. The Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex (MHC) class I molecules on target cells. Previous crystal studies revealed that the Ly49A homodimer binds one MHC molecule in an asymmetric interaction, whereas the Ly49C homodimer binds two MHC in a symmetrical fashion. Moreover, the bound receptors adopt distinctly different homodimeric forms: a "closed state" for Ly49A and an "open state" for Ly49C. Steric clashes between MHC molecules would preclude the closed Ly49A dimer from engaging two MHC in the manner of the open Ly49C dimer. To determine whether individual Ly49 receptors can undergo a conformational switch enabling them to bind MHC in different ways, we carried out a solution NMR study of unbound Ly49A, aided by dipolar coupling technology. This study reveals that, in solution, unligated Ly49A adopts a symmetric, open-state, homodimer conformation similar to that seen previously for Ly49C. Hence, Ly49A can assume both closed and open states. To address whether the Ly49A dimer can bind two MHC molecules in solution, besides the binding of one MHC observed in the crystal, we carried out analytical ultracentrifugation experiments. Velocity sedimentation demonstrates that the Ly49A dimer can engage two MHC molecules in solution, in agreement with NMR results showing that unbound Ly49A exists predominantly in the open state.  相似文献   

16.
人类白细胞抗原G(humanleukocyteantigen.G,HLA—G)属于非经典的HLAI类分子,是机体内一个重要的免疫耐受分子。HLA—G分子可通过与受体结合直接抑制多种免疫活性细胞的生物学功能,或通过诱导产生免疫调节细胞间接抑制机体的免疫应答。研究显示,HLA-G基因多态性及分子表达在母胎免疫、器官移植、肿瘤的发生发展、感染和自身免疫中均有重要意义。  相似文献   

17.
The non-polymorphic MHC molecule Qa-1 and its human counterpart HLA-E present monomorphic signal peptides to innate receptors and thereby regulate lymphocyte activity. Under stress, this peptide content is replaced with a surprisingly diverse repertoire of novel peptides that are associated with heat-shock proteins, infectious agents or antigen processing defects.  相似文献   

18.
The basis of proper recognition of pathogens and tumours is provided by adaptive immunity. This immunological reaction of the recognition function of T-cell receptors on T lymphocytes detects antigenic peptides bound to major histocompatibility complex (MHC) molecules. Structural insight into this process has few grown considerably in the last years. In some of the cases, antigens are self-protein fragments causing autoimmunity diseases. Type 1 diabetes is such a disease connected with the human leukocyte antigen-DQ8 molecule, a class II MHC glycoprotein. Its crystal structure, complexed with LVEALYLVCGERGG peptide (insulin B peptide), has been solved, and important information about the significance of P1, P4 and P9 binding pockets has been discovered. The complex structure also revealed an unusual large number of intermolecular hydrogen bonds between insulin B peptide and MHC molecule. To further investigate the dynamics of peptide/MHC interactions, we perform molecular dynamic simulations in explicit water. Analysis of the results provided useful information of the binding of the peptide antigen to MHC molecule, which is supported by numerous hydrogen bonds besides the electrostatic (P1 and P9 pockets) or hydrophobic interactions (P4). Results also allowed some implications to be drawn for the role of residues located outside of the binding groove.  相似文献   

19.
CD94/NKG2 is a recently described receptor present on natural killer (NK) cells and certain T cells that is composed of the CD94 chain covalently associated with a member of the NKG2 family of molecules. Both chains are glycosylated members of the C-type lectin superfamily. The CD94/NKG2 receptors are functionally heterogenous depending on which NKG2 family member is associated with CD94. Initially, it was thought that CD94/NKG2 receptors recognized a broad array of HLA-A, -B and -C (classical), as well as the nonclassical HLA-G, MHC class I molecules. Instead, recent data have suggested that this receptor is specific for HLA-E complexed with a peptide derived from the signal sequence (residues 3–11) of certain classical MHC class I molecules. Position 2 (residue 4) in the signal sequence derived peptides appears pivotal in determining whether the HLA-E/peptide complex confers resistance to NK-mediated lysis. The potential roles that the CD94/NKG2-HLA-E receptor ligand interaction might play in infection and tumor development are discussed.  相似文献   

20.
Peptide presentation by MHC class II is of critical importance to the function of CD4+ T cells. HLA-DM resides in the endosomal pathway and edits the peptide repertoire of newly synthesized MHC class II molecules before they are exported to the cell surface. HLA-DM ensures MHC class II molecules bind high affinity peptides by targeting unstable MHC class II:peptide complexes for peptide exchange. Research over the past decade has implicated the peptide N-terminus in modulating the ability of HLA-DM to target a given MHC class II:peptide combination. In particular, attention has been focused on both the hydrogen bonds between MHC class II and peptide, and the occupancy of the P1 anchor pocket. We sought to solve the crystal structure of a HLA-DR1 molecule containing a truncated hemagglutinin peptide missing three N-terminal residues compared to the full-length sequence (residues 306–318) to determine the nature of the MHC class II:peptide species that binds HLA-DM. Here we present structural evidence that HLA-DR1 that is loaded with a peptide truncated to the P1 anchor residue such that it cannot make select hydrogen bonds with the peptide N-terminus, adopts the same conformation as molecules loaded with full-length peptide. HLA-DR1:peptide combinations that were unable to engage up to four key hydrogen bonds were also unable to bind HLA-DM, while those truncated to the P2 residue bound well. These results indicate that the conformational changes in MHC class II molecules that are recognized by HLA-DM occur after disengagement of the P1 anchor residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号