首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cullin-RING E3 ubiquitin ligases, substrate binding proteins, such as VHL-box, SOCS-box or the F-box proteins, recruit substrates for ubiquitination, accurately positioning and orienting the substrates for ubiquitin transfer. Yet, how the E3 machinery precisely positions the substrate is unknown. Here, we simulated nine substrate binding proteins: Skp2, Fbw7, β-TrCP1, Cdc4, Fbs1, TIR1, pVHL, SOCS2, and SOCS4, in the unbound form and bound to Skp1, ASK1 or Elongin C. All nine proteins have two domains: one binds to the substrate; the other to E3 ligase modules Skp1/ASK1/Elongin C. We discovered that in all cases the flexible inter-domain linker serves as a hinge, rotating the substrate binding domain, optimally and accurately positioning it for ubiquitin transfer. We observed a conserved proline in the linker of all nine proteins. In all cases, the prolines pucker substantially and the pucker is associated with the backbone rotation toward the E2/ubiquitin. We further observed that the linker flexibility could be regulated allosterically by binding events associated with either domain. We conclude that the flexible linker in the substrate binding proteins orients the substrate for the ubiquitin transfer. Our findings provide a mechanism for ubiquitination and polyubiquitination, illustrating that these processes are under conformational control.  相似文献   

2.
How do the cullins, with conserved structures, accommodate substrate-binding proteins with distinct shapes and sizes? Cullin-RING E3 ubiquitin ligases facilitate ubiquitin transfer from E2 to the substrate, tagging the substrate for degradation. They contain substrate-binding, adaptor, cullin, and Rbx proteins. Previously, we showed that substrate-binding and Rbx proteins are flexible. This allows shortening of the E2-substrate distance for initiation of ubiquitination or increasing the distance to accommodate the polyubiquitin chain. However, the role of the cullin remained unclear. Is cullin a rigid scaffold, or is it flexible and actively assists in the ubiquitin transfer reaction? Why are there different cullins, and how do these cullins specifically facilitate ubiquitination for different substrates? To answer these questions, we performed structural analysis and molecular dynamics simulations based on Cul1, Cul4A, and Cul5 crystal structures. Our results show that these three cullins are not rigid scaffolds but are flexible with conserved hinges in the N-terminal domain. However, the degrees of flexibilities are distinct among the different cullins. Of interest, Cul1 flexibility can also be changed by deletion of the long loop (which is absent in Cul4A) in the N-terminal domain, suggesting that the loop may have an allosteric functional role. In all three cases, these conformational changes increase the E2-substrate distance to a specific range to facilitate polyubiquitination, suggesting that rather than being inert scaffold proteins, cullins allosterically regulate ubiquitination.  相似文献   

3.
In ubiquitination, cullin-RING E3 ubiquitin ligases (CRLs) assist in ubiquitin transfer from ubiquitin-conjugating enzyme E2 to the substrate. Neddylation, which involves NEDD8 transfer from E2 to E3-cullin, stimulates ubiquitination by inducing conformational change in CRLs. However, deneddylation, which removes NEDD8 from cullin, does not suppress ubiquitination in vivo, raising the question of how neddylation/deneddylation exerts its effects. Using molecular-dynamics simulations, we demonstrate that before neddylation occurs, the linker flexibility of Rbx1, a CRL component, leads to conformational changes in CRLs that allow neddylation and initiation of ubiquitination. These large NEDD8-induced conformational changes are retained after deneddylation, allowing both initiation of the ubiquitination process and ubiquitin chain elongation after deneddylation. Furthermore, mutation of lysine, the cullin residue to which NEDD8 covalently attaches, dramatically reduces CRL conformational changes, suggesting that the acceptor lysine allosterically regulates CRLs. Thus, our results imply that neddylation stimulates ubiquitination by CRL conformational control via lysine modification.  相似文献   

4.
We develop coarse-grained models and effective energy functions for simulating thermodynamic and structural properties of multiprotein complexes with relatively low binding affinity (Kd > 1 μM) and apply them to binding of Vps27 to membrane-tethered ubiquitin. Folded protein domains are represented as rigid bodies. The interactions between the domains are treated at the residue level with amino-acid-dependent pair potentials and Debye-Hückel-type electrostatic interactions. Flexible linker peptides connecting rigid protein domains are represented as amino acid beads on a polymer with appropriate stretching, bending, and torsion-angle potentials. In simulations of membrane-attached protein complexes, interactions between amino acids and the membrane are described by residue-dependent short-range potentials and long-range electrostatics. We parameterize the energy functions by fitting the osmotic second virial coefficient of lysozyme and the binding affinity of the ubiquitin-CUE complex. For validation, extensive replica-exchange Monte Carlo simulations are performed of various protein complexes. Binding affinities for these complexes are in good agreement with the experimental data. The simulated structures are clustered on the basis of distance matrices between two proteins and ranked according to cluster population. In ∼ 70% of the complexes, the distance root-mean-square is less than 5 Å from the experimental structures. In ∼ 90% of the complexes, the binding interfaces on both proteins are predicted correctly, and in all other cases at least one interface is correct. Transient and nonspecifically bound structures are also observed. With the validated model, we simulate the interaction between the Vps27 multiprotein complex and a membrane-tethered ubiquitin. Ubiquitin is found to bind preferentially to the two UIM domains of Vps27, but transient interactions between ubiquitin and the VHS and FYVE domains are observed as well. These specific and nonspecific interactions are found to be positively cooperative, resulting in a substantial enhancement of the overall binding affinity beyond the ∼ 300 μM of the specific domains. We also find that the interactions between ubiquitin and Vps27 are highly dynamic, with conformational rearrangements enabling binding of Vps27 to diverse targets as part of the multivesicular-body protein-sorting pathway.  相似文献   

5.
Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1‐Cul1‐F‐box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S‐phase kinase‐associated protein 2 (Skp2), cullin, and RING‐finger proteins of this complex, but the roles of the adapter protein Skp1 and F‐box domain of Skp2 have not been determined. Using sub‐microsecond molecular dynamics simulations of full‐length Skp1, unbound Skp2, Skp2‐Cks1 (Cks1: Cyclin‐dependent kinases regulatory subunit 1), Skp1‐Skp2, and Skp1‐Skp2‐Cks1 complexes, we have elucidated the function of Skp1 and the F‐box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X‐ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C‐terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F‐box proteins. Furthermore, we observed that the F‐box domain could rotate (5°–129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1‐Skp2 and Skp1‐Skp2‐Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F‐box domain of Skp2 and Skp1‐Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates. Proteins 2016; 84:159–171. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Many protein molecules are formed by two or more domains whose structures and dynamics are closely related to their biological functions. It is thus important to develop methods to determine the structural properties of these multidomain proteins. Here, we characterize the interdomain motions in the calcium-bound state of calmodulin (Ca2 +-CaM) using NMR chemical shifts as replica-averaged structural restraints in molecular dynamics simulations. We find that the conformational fluctuations of the interdomain linker, which are largely responsible for the overall interdomain motions of CaM, can be well described by exploiting the information provided by chemical shifts. We thus identify 10 residues in the interdomain linker region that change their conformations upon substrate binding. Five of these residues (Met76, Lys77, Thr79, Asp80 and Ser81) are highly flexible and cover the range of conformations observed in the substrate-bound state, while the remaining five (Arg74, Lys75, Asp78, Glu82 and Glu83) are much more rigid and do not populate conformations typical of the substrate-bound form. The ensemble of conformations representing the Ca2 +-CaM state obtained in this study is in good agreement with residual dipolar coupling, paramagnetic resonance enhancement, small-angle X-ray scattering and fluorescence resonance energy transfer measurements, which were not used as restraints in the calculations. These results provide initial evidence that chemical shifts can be used to characterize the conformational fluctuations of multidomain proteins.  相似文献   

7.
The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellular protein β-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin ligase complex and a known Vpu-interacting protein. β-TrCP is also required for the optimal enhancement of virion-release by Vpu. Mutations in the DSGxxS β-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which Vpu links BST-2 to β-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data support a model in which Vpu co-opts the β-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events that remove BST-2 from its site of action as a virion-tethering factor.  相似文献   

8.
Acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a relatively newly described and yet indispensable enzyme needed for generation of the bioactive surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPtdCho). Here, we show that lipopolysaccharide (LPS) causes LPCAT1 degradation using the Skp1-Cullin-F-box ubiquitin E3 ligase component, β-transducin repeat-containing protein (β-TrCP), that polyubiquitinates LPCAT1, thereby targeting the enzyme for proteasomal degradation. LPCAT1 was identified as a phosphoenzyme as Ser(178) within a phosphodegron was identified as a putative molecular recognition site for glycogen synthase kinase-3β (GSK-3β) phosphorylation that recruits β-TrCP docking within the enzyme. β-TrCP ubiquitinates LPCAT1 at an acceptor site (Lys(221)), as substitution of Lys(221) with Arg abrogated LPCAT1 polyubiquitination. LPS profoundly reduced immunoreactive LPCAT1 levels and impaired lung surfactant mechanics, effects that were overcome by siRNA to β-TrCP and GSK-3β or LPCAT1 gene transfer, respectively. Thus, LPS appears to destabilize the LPCAT1 protein by GSK-3β-mediated phosphorylation within a canonical phosphodegron for β-TrCP docking and site-specific ubiquitination. LPCAT1 is the first lipogenic substrate for β-TrCP, and the results suggest that modulation of the GSK-3β-SCFβ(TrCP) E3 ligase effector pathway might be a unique strategy to optimize dipalmitoylphosphatidylcholine levels in sepsis.  相似文献   

9.
Ubiquitination involves the attachment of ubiquitin to lysine residues on substrate proteins or itself, which can result in protein monoubiquitination or polyubiquitination. Ubiquitin attachment to different lysine residues can generate diverse substrate-ubiquitin structures, targeting proteins to different fates. The mechanisms of lysine selection are not well understood. Ubiquitination by the largest group of E3 ligases, the RING-family E3 s, is catalyzed through co-operation between the non-catalytic ubiquitin-ligase (E3) and the ubiquitin-conjugating enzyme (E2), where the RING E3 binds the substrate and the E2 catalyzes ubiquitin transfer. Previous studies suggest that ubiquitination sites are selected by E3-mediated positioning of the lysine toward the E2 active site. Ultimately, at a catalytic level, ubiquitination of lysine residues within the substrate or ubiquitin occurs by nucleophilic attack of the lysine residue on the thioester bond linking the E2 catalytic cysteine to ubiquitin. One of the best studied RING E3/E2 complexes is the Skp1/Cul1/F box protein complex, SCFCdc4, and its cognate E2, Cdc34, which target the CDK inhibitor Sic1 for K48-linked polyubiquitination, leading to its proteasomal degradation. Our recent studies of this model system demonstrated that residues surrounding Sic1 lysines or lysine 48 in ubiquitin are critical for ubiquitination. This sequence-dependence is linked to evolutionarily conserved key residues in the catalytic region of Cdc34 and can determine if Sic1 is mono- or poly-ubiquitinated. Our studies indicate that amino acid determinants in the Cdc34 catalytic region and their compatibility to those surrounding acceptor lysine residues play important roles in lysine selection. This may represent a general mechanism in directing the mode of ubiquitination in E2 s.  相似文献   

10.
RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin‐conjugating enzymes (E2s) charged with ubiquitin. How low‐affinity RING–E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high‐affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR‐induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2‐binding sites coordinately facilitate processive ubiquitination.  相似文献   

11.
12.
The mRNA-stabilizing protein HuR acts a stress response protein whose function and/or protein stability are modulated by diverse stress stimuli through posttranslational modifications. Here, we report a novel mechanism by which metabolic stress facilitates proteasomal degradation of HuR in cancer cells. In response to the glucose transporter inhibitor CG-5, HuR translocates to the cytoplasm, where it is targeted by the ubiquitin E3 ligase β-TrCP1 for degradation. The cytoplasmic localization of HuR is facilitated by PKCα-mediated phosphorylation at Ser-318 as the Ser-318 → alanine substitution abolishes the ability of the resulting HuR to bind PKCα and to undergo nuclear export. The mechanistic link between β-TrCP1 and HuR degradation was supported by the ability of ectopically expressed β-TrCP1 to mimic CG-5 to promote HuR degradation and by the protective effect of dominant negative inhibition of β-TrCP1 on HuR ubiquitination and degradation. Substrate targeting of HuR by β-TrCP1 was further verified by coimmunoprecipitation and in vitro GST pull-down assays and by the identification of a β-TrCP1 recognition site. Although HuR does not contain a DSG destruction motif, we obtained evidence that β-TrCP1 recognizes an unconventional motif, 296EEAMAIAS304, in the RNA recognition motif 3. Furthermore, mutational analysis indicates that IKKα-dependent phosphorylation at Ser-304 is crucial to the binding of HuR to β-TrCP1. Mechanistically, this HuR degradation pathway differs from that reported for heat shock and hypoxia, which underlies the complexity in the regulation of HuR turnover under different stress stimuli. The ability of glycolysis inhibitors to target the expression of oncogenic proteins through HuR degradation might foster novel strategies for cancer therapy.  相似文献   

13.
14.
HIV‐2 and closely related SIV Vpx proteins are essential for viral replication in macrophages and dendritic cells. Vpx hijacks DCAF1–DDB1–Cul4 E3 ubiquitin ligase to promote viral replication. DCAF1 is essential for cell proliferation and embryonic development and is responsible for the polyubiquitination of poorly defined cellular proteins. How substrate receptors recruit the DCAF1‐containing E3 ubiquitin ligase to induce protein degradation is still poorly understood. Here we identify a highly conserved motif (Wx4Φx2Φx3AΦxH) that is present in diverse Vpx and Vpr proteins of primate lentiviruses. We demonstrate that the Wx4Φx2Φx3AΦxH motif in SIVmac Vpx is required for both the Vpx–DCAF1 interaction and/or Vpx‐mediated degradation of SAMHD1. DCAF1‐binding defective Vpx mutants also have impaired ability to promote SIVΔVpx virus infection of myeloid cells. Critical amino acids in the Wx4Φx2Φx3AΦxH motif of SIV Vpx that are important for DCAF1 interaction maintained the ability to bind SAMHD1, indicating that the DCAF1 and SAMHD1 interactions involve distinctive interfaces in Vpx. Surprisingly, VpxW24A mutant proteins that were still capable of binding DCAF1 and SAMHD1 lost the ability to induce SAMHD1 degradation, suggesting that Vpx is not a simple linker between the DCAF1–DDB1–Cul4 E3 ubiquitin ligase and its substrate, SAMHD1.VpxW24A maintained the ability to accumulate in the nucleus despite the fact that nuclear, but not cytoplasmic, mutant forms of SAMHD1 were more sensitive to Vpx‐mediated degradation. The Wx4Φx2Φx3AΦxH motif in HIV‐1 Vpr is also required for the Vpr–DCAF1 interaction and Vpr‐induced G2 cell cycle arrest. Thus, our data reveal previously unrecognized functional interactions involved in the assembly of virally hijacked DCAF1–DDB1‐based E3 ubiquitin ligase complex.  相似文献   

15.
An E3 ubiquitin ligase mediates the transfer of activated ubiquitin from an E2 ubiquitin-conjugating enzyme to its substrate lysine residues. Using a structure-based, yeast two-hybrid strategy, we discovered six previously unidentified interactions between the human heterodimeric RING E3 BRCA1-BARD1 and the human E2s UbcH6, Ube2e2, UbcM2, Ubc13, Ube2k and Ube2w. All six E2s bind directly to the BRCA1 RING motif and are active with BRCA1-BARD1 for autoubiquitination in vitro. Four of the E2s direct monoubiquitination of BRCA1. Ubc13-Mms2 and Ube2k direct the synthesis of Lys63- or Lys48-linked ubiquitin chains on BRCA1 and require an acceptor ubiquitin attached to BRCA1. Differences between the mono- and polyubiquitination activities of the BRCA1-interacting E2s correlate with their ability to bind ubiquitin noncovalently at a site distal to the active site. Thus, BRCA1 has the ability to direct the synthesis of specific polyubiquitin chain linkages, depending on the E2 bound to its RING.  相似文献   

16.
During ubiquitin ligation, an E2 conjugating enzyme receives ubiquitin from an E1 enzyme and then interacts with an E3 ligase to modify substrates. Competitive binding experiments with three human E2-E3 protein pairs show that the binding of E1s and of E3s to E2s are mutually exclusive. These results imply that polyubiquitination requires recycling of E2 for addition of successive ubiquitins to substrate.  相似文献   

17.
泛素连接酶的结构与功能研究进展   总被引:2,自引:0,他引:2  
泛素化是体内蛋白质翻译后重要修饰之一,是蛋白质降解的信号.泛素连接酶E3是泛素化过程中的关键酶之一,介导活化的泛素从结合酶E2转移到底物,不同的泛素连接酶作用于不同的底物蛋白,决定了泛素化修饰的特异性.根据结构与功能机制的不同,可将泛素连接酶E3分为HECT (homologousto E6AP C terminus)家族和RING-finger家族,前者含有HECT结构域,可直接与泛素连接再将其传递给底物.RING-finger家族的E3发现较晚,庞大且功能复杂,是近年来研究的热点,此家族均包含相似的E2结合结构域和特异的底物结合部分,作为桥梁将活化的泛素从E2直接转移到靶蛋白,其本身并不与泛素发生作用.总结了这2种E3连接酶家族成员的三维结构及功能机制研究的最新进展.  相似文献   

18.
19.
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds.  相似文献   

20.
泛素化是真核细胞中重要的蛋白质翻译后修饰过程,通过靶向蛋白质降解或其他信号途径参与多种细胞功能.底物蛋白的多聚泛素化修饰是一个持续的过程,其中不仅涉及复杂泛素系统相关酶的参与,而且存在更为复杂的结构上相互作用与泛素链组装机理.不同的泛素链修饰决定了底物蛋白下游的不同命运,泛素结合酶E2在泛素链形成中的重要作用受到越来越多的关注.对泛素链形成机理的深入研究与认识有利于发现与泛素系统相关的疾病靶点和利用泛素化调控方法进行治疗.本综述总结了E2和E3如何决定不同泛素链形成的机制和相关的结构信息,以及两种不同的泛素链组装机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号