首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sterol 14α-demethylase (CYP51) that catalyzes the removal of the 14α-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14α-methylenecyclopropyl-Δ7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.  相似文献   

2.
Chagas disease, caused by the eukaryotic (protozoan) parasite Trypanosoma cruzi, is an alarming emerging global health problem with no clinical drugs available to treat the chronic stage. Azole inhibitors of sterol 14α-demethylase (CYP51) were proven effective against Chagas, and antifungal drugs posaconazole and ravuconazole have entered clinical trials in Spain, Bolivia, and Argentina. Here we present the x-ray structures of T. cruzi CYP51 in complexes with two alternative drug candidates, pyridine derivatives (S)-(4-chlorophenyl)-1-(4-(4-(trifluoromethyl)phenyl)-piperazin-1-yl)-2-(pyridin-3-yl)ethanone (UDO; Protein Data Bank code 3ZG2) and N-[4-(trifluoromethyl)phenyl]-N-[1-[5-(trifluoromethyl)-2-pyridyl]-4-piperi-dyl]pyridin-3-amine (UDD; Protein Data Bank code 3ZG3). These compounds have been developed by the Drugs for Neglected Diseases initiative (DNDi) and are highly promising antichagasic agents in both cellular and in vivo experiments. The binding parameters and inhibitory effects on sterol 14α-demethylase activity in reconstituted enzyme reactions confirmed UDO and UDD as potent and selective T. cruzi CYP51 inhibitors. Comparative analysis of the pyridine- and azole-bound CYP51 structures uncovered the features that make UDO and UDD T. cruzi CYP51-specific. The structures suggest that although a precise fit between the shape of the inhibitor molecules and T. cruzi CYP51 active site topology underlies their high inhibitory potency, a longer coordination bond between the catalytic heme iron and the pyridine nitrogen implies a weaker influence of pyridines on the iron reduction potential, which may be the basis for the observed selectivity of these compounds toward the target enzyme versus other cytochrome P450s, including human drug-metabolizing P450s. These findings may pave the way for the development of novel CYP51-targeted drugs with optimized metabolic properties that are very much needed for the treatment of human infections caused by eukaryotic microbial pathogens.  相似文献   

3.
Malassezia globosa is one of the most common yeasts to cause various human skin diseases including dandruff and seborrheic dermatitis. Genomic analysis of M. globosa revealed four putative cytochrome P450 (CYP) enzymes. Here, we report the purification and characterization of recombinant CYP51, a putative lanosterol 14α-demethylase, from M. globosa. The M. globosa CYP51 was expressed heterologously in Escherichia coli, followed by purification. Purified CYP51 showed a typical reduced CO-difference spectrum of P450, with a maximum absorption at 447?nm. Purified CYP51 exhibited tight binding to azole antifungal agents such as ketoconazole, econazole, fluconazole, or itraconazole, with K(d) values around 0.26-0.84?μM, which suggests that CYP51 is an orthologous target for antifungal agents in the M. globosa. In addition, three mutations (Y127F, A169S, and K176N) in the amino acid sequence of M. globosa CYP51 were identified in one of the azole-resistant strains. Homology modeling of M. globosa CYP51 suggested that the Y127F mutation may influence the resistance to azoles by blocking substrate access channels. Taken together, functional expression and characterization of the CYP51 enzyme can provide a fundamental basis for a specific antifungal drug design for dandruff caused by M. globosa.  相似文献   

4.
5.
Lepesheva GI  Nes WD  Zhou W  Hill GC  Waterman MR 《Biochemistry》2004,43(33):10789-10799
New isoforms of CYP51 (sterol 14alpha-demethylase), an essential enzyme in sterol biosynthesis and primary target of azole antimycotic drugs, are found in pathogenic protists, Trypanosoma brucei(TB), T. vivax, T. cruzi, and Leishmania major. The sequences share approximately 80% amino acid identity and are approximately 25% identical to sterol 14alpha-demethylases from other biological kingdoms. Differences of residues conserved throughout the rest of the CYP51 family that align with the BC-loop and helices F and G of CYP51 from Mycobacterium tuberculosis (MT)) imply possible alterations in the topology of the active site cavity of the protozoan enzymes. CYP51 and cytochrome P450 reductase (CPR) from TB were cloned, expressed in Escherichia coli, and purified. The P450 has normal spectral features (including absolute absorbance, carbon monoxide, and ligand binding spectra), is efficiently reduced by TB and rat CPR but demonstrates altered specificity in comparison with human CYP51 toward three tested azole inhibitors, and contrary to the human, Candida albicans, and MT isoforms, reveals profound substrate preference toward obtusifoliol (turnover 5.6 min(-1)). It weakly interacts with the other known CYP51 substrates; slow lanosterol conversion predominantly produces the 14alpha-carboxyaldehyde intermediate. Although obtusifoliol specificity is typical for plant isoforms of CYP51, the set of sterol biosynthetic enzymes in the protozoan genomes together with available information about sterol composition of kinetoplastid cells suggest that the substrate preference of TBCYP51 may reflect a novel sterol biosynthetic pathway in Trypanosomatidae.  相似文献   

6.
Direct electron transfer has been demonstrated between cytochrome P450 2B4 (CYP2B4), P450 1A2 (CYP1A2), sterol 14α-demethylase (CYP51MT) and screen printed graphite electrodes, modified by gold nanoparticles and didodecyldimethyl ammonium bromide (DDAB). The proposed method for preparation of enzymatic nanostructured electrodes may be used for electrodetection of this hemoprotein provided that 2–200 pmol P450 per electrode has been adsorbed. Electron transfer, direct electrochemical reduction and interaction with P450 substrates (oxygen, benzphetamine, lanosterol) and inhibitor ketoconazole were analyzed using cyclic voltammetry (CV), square wave (SWV) or differential pulse (DPV) voltammetry, and amperometry.  相似文献   

7.
The Mycobacterium tuberculosis P450 enzymes are of interest for their pharmacological development potential, as evidenced by their susceptibility to inhibition by antifungal azole drugs that normally target sterol 14α-demethylase (CYP51). Although antifungal azoles show promise, direct screening of compounds against M. tuberculosis P450 enzymes may identify novel, more potent, and selective inhibitory scaffolds. Here we report that CYP130 from M. tuberculosis has a natural propensity to bind primary arylamines with particular chemical architectures. These compounds were identified via a high throughput screen of CYP130 with a library of synthetic organic molecules. As revealed by subsequent x-ray structure analysis, selected compounds bind in the active site by Fe-coordination and hydrogen bonding of the arylamine group to the carbonyl oxygen of Gly243. As evidenced by the binding of structural analogs, the primary arylamine group is indispensable, but synergism due to hydrophobic contacts between the rest of the molecule and protein amino acid residues is responsible for a binding affinity comparable with that of the antifungal azole drugs. The topology of the CYP130 active site favors angular coordination of the arylamine group over the orthogonal coordination of azoles. Upon substitution of Gly243 by an alanine, the binding mode of azoles and some arylamines reverted from type II to type I because of hydrophobic and steric interactions with the alanine side chain. We suggest a role for the conserved Ala(Gly)243-Gly244 motif in the I-helix in modulating both the binding affinity of the axial water ligand and the ligand selectivity of cytochrome P450 enzymes.CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 (P450, CYP)2 enzymes and is one of three (CYP51, CYP121, and CYP130) that have been studied as individually expressed proteins at the structural level. Evidence has accumulated for the importance of M. tuberculosis P450 enzymes in virulence (CYP132) (1), host infection (CYP125) (2), and pathogen viability (CYP128, CYP121) (3, 4), although neither their exact biological functions nor any of the endogenous substrates upon which these enzymes operate have yet been established. However, it has recently been shown in vitro that CYP121 catalyzes a C–C coupling reaction between two tyrosine groups (5). CYP130 is absent from the genome of Mycobacterium bovis, suggesting that it might play specific role(s) in the infection of the human host and thus constitute a potential therapeutic target.The potential of M. tuberculosis P450 enzymes for pharmacologic development was initially suggested by their susceptibility to inhibition by antifungal azole drugs such as fluconazole, econazole, and clotrimazole. These drugs block sterol 14α-demethylase CYP51 in fungi (6), tightly bind to M. tuberculosis P450 proteins (7, 8), and display inhibitory potential against latent and multidrug-resistant forms of tuberculosis both in vitro and in tuberculosis-infected mice (914).The substantial differences between fungal CYP51 and the potential P450 targets in microbial pathogens, including M. tuberculosis, suggest that the direct screening of compounds against M. tuberculosis CYP enzymes could identify novel inhibitory scaffolds that are more potent and selective than antifungal drugs. Structurally characterized screening targets are advantageous, as the already defined purification and crystallization protocols can be applied to obtain co-crystal structures and to elucidate the binding modes of screening hits. This approach has been successfully applied to CYP51, resulting in identification of novel inhibitory scaffolds for CYP51 therapeutic targets (15, 16).Toward this goal, the property of P450 enzymes to shift the ferric heme iron Soret band on ligand binding (17) provides an experimental platform for high throughput screening of compound libraries to select chemotypes with high binding affinities for the target. Expulsion of the heme iron axial water ligand from the Fe-coordination sphere by the incoming substrate followed by transition of the ferric heme from the low-spin hexacoordinated to the high-spin pentacoordinated state characterize type I spectral shifts and are a prerequisite for P450 catalytic activity. Replacement of a weak axial ligand, the water molecule, with a stronger one possessing a nitrogen-containing aliphatic or aromatic group coordinating to the heme iron characterizes type II spectral shifts.To find new high affinity ligands of CYP130, a commercial library of 20,000 small organic molecules comprising a large selection of molecular scaffolds was screened against the enzyme. In contrast to the results with CYP51, no type I binding hits were identified. Screening produced about a dozen structurally diverse type II hits that were unexpectedly devoid of the usual aromatic nitrogen atoms readily accessible for axial coordination of the heme iron, suggesting an alternative coordination mode. High resolution x-ray structure analysis determined that two compounds coordinated to the heme iron via a primary arylamine group, providing the first structural evidence on P450-heterocyclic arylamine interactions.  相似文献   

8.
The amino acid residues affecting the function of rat sterol 14-demethylase P450 (CYP51) were examined by means of point mutation. Forty-five mutants with respect to 27 amino acid sites were constructed and expressed in Escherichia coli. Substitution of highly conserved Y131, E369, R372, or R382 decreased the expression of CYP51 protein, indicating some structural importance of these residues. Substitution of H314, T315, or S316 caused considerable effects on the catalytic activity, and T315 was identified as the "conserved threonine" of CYP51. H314 was important for maintenance of the activity of CYP51 and was a characteristic residue of this P450, because the position corresponding to this residue is occupied by an acidic amino acid in most other P450 species. A144 was identified as a residue affecting the interaction of CYP51 with ketoconazole. Substitution of A144 with I, which occupies the corresponding position in fungal CYP51, enhanced the ketoconazole susceptibility of rat CYP51 with little change in the catalytic activity, indicating an important role of this residue in determination of the ketoconazole susceptibility of CYP51. Alteration of the catalytic activity was caused by the substitution at some other sites, whereas substitution of a few highly conserved amino acids caused little alteration of the activity of CYP51.  相似文献   

9.
Green mold of citrus, caused by Penicillium digitatum, is the most serious postharvest disease of citrus. Sterol 14alpha-demethylase (CYP51) is one of the key enzymes of sterol biosynthesis in biological kingdoms and is a prime target of antifungal drugs. To exploit novel 14alpha-demethylase inhibitor (DMI) fungicides, DNA and total RNA were isolated from P. digitatum. The CYP51 of P. digitatum was cloned and expressed in Escherichia coli, yielding recombinant protein with a molecular weight of c. 59 kDa. The P. digitatum CYP51 protein (PdCYP51) was purified and polyclonal antibodies were prepared. Compared with the sequence of P. digitatum PD5 in GenBank, there were four mutated nucleotides which resulted in four mutated amino acids. The three-dimensional (3D) model of P. digitatum CYP51 was established based on structure template of 1e9x.pdb and diniconazole was docked into the active site by FlexX. According to spectral data, it is suggested that the purified soluble protein had high affinity with diniconazole, a potent inhibitor of CYP51 reaction in fungi. At the same time, these spectral data suggested that the 3D model and the docking model were reasonable, which we hope can be used to provide a virtual screening of novel DMI drugs.  相似文献   

10.
Sterol 14alpha-demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes and drug targets in antifungal therapy. Here, we report CYP51 structures in ligand-free and estriol bound forms. Using estriol as a probe, we determined orientation of the substrate in the active site, elucidated protein contacts with the invariant 3beta-hydroxy group of a sterol, and identified F78 as a key discriminator between 4alpha-methylated and 4alpha,beta-dimethylated substrates. Analysis of CYP51 dynamics revealed that the C helix undergoes helix-coil transition upon binding and dissociation of a ligand. Loss of helical structure of the C helix in the ligand-free form results in an unprecedented opening of the substrate binding site. Upon binding of estriol, the BC loop loses contacts with molecular surface and tends to adopt a closed conformation. A mechanism for azole resistance in the yeast pathogen Candida albicans associated with mutations in the ERG11 gene encoding CYP51 is suggested based on CYP51 protein dynamics.  相似文献   

11.
The inhibition by azole antifungals of human cytochrome CYP3A4, the major form of drug metabolising enzyme within the liver, was compared with their inhibitory activity against their target enzyme, Candida albicans sterol 14alpha-demethylase (CYP51), following heterologous expression in Saccharomyces cerevisiae. IC(50) values for ketoconazole and itraconazole CYP3A4 inhibition were 0.25 and 0. 2 microM. These values compared with much lower doses required for the complete inhibition of C. albicans CYP51, where IC(50) values of 0.008 and 0.0076 microM were observed for ketoconazole and itraconazole, respectively. Additionally, stereoselective inhibition of CYP3A4 and CYP51 was observed with enantiomers of the azole antifungal compounds diclobutrazol and SCH39304. In both instances, the RR(+) configuration at their asymmetric carbon centres was most active. Interestingly, the SS(-) enantiomeric form of SCH39304 was inactive and failed to bind CYP3A4, as demonstrable by Type II binding spectra.  相似文献   

12.

Background

Sterol 14α-demethylase (cytochrome P450 51, CYP51, P45014DM) is a microsomal enzyme that in eukaryotes catalyzes formation of sterols essential for cell membrane function and as precursors in biosynthesis of steroid hormones. Functional properties of CYP51s are unknown in non-mammalian deuterostomes.

Methods

PCR-cloning and sequencing and computational analyses (homology modeling and docking) addressed CYP51 in zebrafish Danio rerio, the reef fish sergeant major Abudefduf saxatilis, and the sea urchin Strongylocentrotus purpuratus. Following N-terminal amino acid modification, zebrafish CYP51 was expressed in Escherichia coli, and lanosterol 14α-demethylase activity and azole inhibition of CYP51 activity were characterized using GC-MS.

Results

Molecular phylogeny positioned S. purpuratus CYP51 at the base of the deuterostome clade. In zebrafish, CYP51 is expressed in all organs examined, most strongly in intestine. The recombinant protein bound lanosterol and catalyzed 14α-demethylase activity, at 3.2 nmol/min/nmol CYP51. The binding of azoles to zebrafish CYP51 gave KS (dissociation constant) values of 0.26 μM for ketoconazole and 0.64 μM for propiconazole. Displacement of carbon monoxide also indicated zebrafish CYP51 has greater affinity for ketoconazole. Docking to homology models showed that lanosterol docks in fish and sea urchin CYP51s with an orientation essentially the same as in mammalian CYP51s. Docking of ketoconazole indicates it would inhibit fish and sea urchin CYP51s.

Conclusions

Biochemical and computational analyses are consistent with lanosterol being a substrate for early deuterostome CYP51s.

General significance

The results expand the phylogenetic view of animal CYP51, with evolutionary, environmental and therapeutic implications.  相似文献   

13.
Azole antifungal compounds are important in agriculture and in the treatment of mycotic infection The target enzyme, sterol 14α-demethylase (CYP51), is inhibited through binding of triazole N-4 to the haem of this P450, as a sixth ligand together with the N-1 substituent groups interacting in some way with the apoprotein. Here we use Saccharomyces cerevisiae expression systems for the target enzyme of Candida albicans to investigate binding of enantiomers of the azole antifungal compounds SCH39304 and tetraconazole. A molecular model produced previously provided qualitative explanations for these differences. Interaction of the azole antifungal aromatic group with Phe-233 or -235 may cause the higher activity for (R)-tetraconazole while inactivity of the (SS)-enantiomer of SCH39304 was predicted to result from incompatibility of the hydrophilic sulfonyl moiety when located into the hydrophobic pocket of the active site.  相似文献   

14.
杨娇艳  廖明军  杨劭 《生物工程学报》2008,24(10):1681-1688
甾醇14α-去甲基化酶(CYP51)是分布最广的细胞色素P450家族成员,是生物甾醇合成过程中的关键酶.故CYP51不仅是细胞色素P450蛋白结构、功能、结构与功能关系等研究的模板,而且是重要的降胆固醇药物、抗真菌药物和除草剂作用靶标,具有重要的经济价值.以下就CYP51家族的序列特征、功能(生理功能和生化特征)、结构、结构与功能的关系、CYP51活性的抑制等方面的研究进展进行了综述.并对CYP51抑制剂的研究局限方面进行了讨论,探讨了CYP51抑制剂设计开发的相关问题.  相似文献   

15.
While the orally-active azoles such as fluconazole and posaconazole are effective antifungal agents, they potently inhibit a broad range of off-target human cytochrome P450 enzymes (CYPs) leading to various safety issues (e.g., drug-drug interactions, liver, and reproductive toxicities). Recently we described the rationally-designed, antifungal agent VT-1161 that is more selective for fungal CYP51 than related human CYP enzymes such as CYP3A4. Herein, we describe the use of a homology model of Aspergillus fumigatus to design and optimize a novel series of highly selective, broad spectrum fungal CYP51 inhibitors. This series includes the oral antifungal VT-1598 that exhibits excellent potency against yeast, dermatophyte, and mold fungal pathogens.  相似文献   

16.
Sterol 14α-demethylase (14DM, the CYP51 family of cytochrome P450) is an essential enzyme in sterol biosynthesis in eukaryotes. It serves as a major drug target for fungal diseases and can potentially become a target for treatment of human infections with protozoa. Here we present 1.9 Å resolution crystal structures of 14DM from the protozoan pathogen Trypanosoma brucei, ligand-free and complexed with a strong chemically selected inhibitor N-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2-yl)benzamide that we previously found to produce potent antiparasitic effects in Trypanosomatidae. This is the first structure of a eukaryotic microsomal 14DM that acts on sterol biosynthesis, and it differs profoundly from that of the water-soluble CYP51 family member from Mycobacterium tuberculosis, both in organization of the active site cavity and in the substrate access channel location. Inhibitor binding does not cause large scale conformational rearrangements, yet induces unanticipated local alterations in the active site, including formation of a hydrogen bond network that connects, via the inhibitor amide group fragment, two remote functionally essential protein segments and alters the heme environment. The inhibitor binding mode provides a possible explanation for both its functionally irreversible effect on the enzyme activity and its selectivity toward the 14DM from human pathogens versus the human 14DM ortholog. The structures shed new light on 14DM functional conservation and open an excellent opportunity for directed design of novel antiparasitic drugs.  相似文献   

17.
Sterol 14-demethylase P450 (CYP51) is an essential enzyme for sterol biosynthesis by eukaryotes. We have cloned rat and human CYP51 cDNAs [Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Horiuchi, T., and Yoshida, Y. (1996) J. Biochem. 119, 926-933]. The cloned rat CYP51 cDNA was expressed in Escherichia coli with modification of the N-terminal amino acid sequence, and the expressed protein (CYP51m) was purified to gel-electrophoretic homogenity. The spectrophotometrically determined specific content of CYP51m was 16 nmol/mg protein and the apparent molecular weight was estimated to be 53,000 on SDS-PAGE. Soret peaks of the oxidized and reduced CO-complex of CYP51m were observed at 417 and 447 nm, respectively. The purified CYP51m catalyzed the 14-demethylation of lanosterol and 24,25-dihydrolanosterol upon reconstitution with NADPH-P450 reductase purified from rat liver microsomes. The apparent K(m) and V(max) values for lanosterol were 10.5 microM and 13.9 nmol/min/nmol P450, respectively, and those for 24, 25-dihydrolanosterol were 20.0 microM and 20.0 nmol/min/nmol P450, respectively. The lanosterol demethylase activity of the reconstituted system of CYP51m was inhibited by ketoconazole, itraconazole and fluconazole with apparent IC(50) values of 0.2, 0.7, and 160 microM, respectively.  相似文献   

18.
To gain insights into the molecular basis of the design for the selective azole anti-fungals, we compared the binding properties of azole-based inhibitors for cytochrome P450 sterol 14alpha-demethylase (CYP51) from human (HuCYP51) and Mycobacterium tuberculosis (MtCYP51). Spectroscopic titration of azoles to the CYP51s revealed that HuCYP51 has higher affinity for ketoconazole (KET), an azole derivative that has long lipophilic groups, than MtCYP51, but the affinity for fluconazole (FLU), which is a member of the anti-fungal armamentarium, was lower in HuCYP51. The affinity for 4-phenylimidazole (4-PhIm) to MtCYP51 was quite low compared with that to HuCYP51. In the resonance Raman spectra for HuCYP51, the FLU binding induced only minor spectral changes, whereas the prominent high frequency shift of the bending mode of the heme vinyl group was detected in the KET- or 4-PhIm-bound forms. On the other hand, the bending mode of the heme propionate group for the FLU-bound form of MtCYP51 was shifted to high frequency as found for the KET-bound form, but that for 4-PhIm was shifted to low frequency. The EPR spectra for 4-PhIm-bound MtCYP51 and FLU-bound HuCYP51 gave multiple g values, showing heterogeneous binding of the azoles, whereas the single gx and gz values were observed for other azole-bound forms. Together with the alignment of the amino acid sequence, these spectroscopic differences suggest that the region between the B' and C helices, particularly the hydrophobicity of the C helix, in CYP51s plays primary roles in determining strength of interactions with azoles; this differentiates the binding specificity of azoles to CYP51s.  相似文献   

19.
Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins. To date, nothing is known about P450s in Sporothrix schenckii and the molecular basis of its resistance to ketoconazole. Here we present genome-wide identification, annotation, phylogenetic analysis and comprehensive P450 family-level comparative analysis of S. schenckii P450s with pathogenic fungi P450s, along with a rationale for ketoconazole resistance by S. schenckii based on in silico structural analysis of CYP51. Genome data-mining of S. schenckii revealed 40 P450s in its genome that can be grouped into 32 P450 families and 39 P450 subfamilies. Comprehensive comparative analysis of P450s revealed that S. schenckii shares 11 P450 families with plant pathogenic fungi and has three unique P450 families: CYP5077, CYP5386 and CYP5696 (novel family). Among P450s, CYP51, the main target of azole drugs was also found in S. schenckii. 3D modeling of S. schenckii CYP51 revealed the presence of characteristic P450 motifs with exceptionally large reductase interaction site 2. In silico analysis revealed number of mutations that can be associated with ketoconazole resistance, especially at the channel entrance to the active site. One of possible reason for better stabilization of itraconazole, compared to ketoconazole, is that the more extended molecule of itraconazole may form a hydrogen bond with ASN-230. This in turn may explain its effectiveness against S. schenckii vis-a-vis resistant to ketoconazole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

20.
Lepesheva GI  Virus C  Waterman MR 《Biochemistry》2003,42(30):9091-9101
CYP51 (sterol 14 alpha-demethylase) is an essential enzyme in sterol biosynthetic pathways and the only P450 gene family having catalytically identical orthologues in different biological kingdoms. The proteins have low sequence similarity across phyla, and the whole family contains about 40 completely conserved amino acid residues. Fifteen of these residues lie in the secondary structural elements predicted to form potential substrate recognition sites within the P450 structural fold. The role of 10 of these residues, in the B' helix/BC loop, helices F and G, has been studied by site-directed mutagenesis using as a template the soluble sterol 14 alpha-demethylase of known structure, CYP51 from Mycobacterium tuberculosis (MT) and the human orthologue. Single amino acid substitutions of seven residues (Y76, F83, G84, D90, L172, G175, and R194) result in loss of the ability of the mutant MTCYP51 to metabolize lanosterol. Residual activity of D195A is very low, V87A is not expressed as a P450, and A197G has almost 1 order of magnitude increased activity. After purification, all of the mutants show normal spectral properties, heme incorporation, and the ability to be reduced enzymatically and to interact with azole inhibitors. Profound influence on the catalytic activity correlates well with the spectral response to substrate binding, effect of substrate stabilization on the reduced state of the P450, and substrate-enhanced efficiency of enzymatic reduction. Mutagenesis of corresponding residues in human CYP51 implies that the conserved amino acids might be essential for the evolutionary conservation of sterol 14 alpha-demethylation from bacteria to mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号