共查询到9条相似文献,搜索用时 0 毫秒
1.
Laurent Kreplak Lori R. Nyland John L. Contompasis 《Journal of molecular biology》2009,386(5):1403-3005
During flight, the wings of Drosophila melanogaster beat nearly 200 times per second. The indirect flight muscle fibers that power this movement have evolved to resist the repetitive mechanical stress that results from the 5-ms wing beat cycle at a strain amplitude of 3.5%. In order to understand how this is achieved at the sarcomere level, we have analyzed the mechanical properties of native thick filaments isolated from indirect flight muscle. Single filaments adsorbed onto a solid support were manipulated in physiological buffer using an atomic force microscope. Images taken after the manipulation revealed that segments were stretched, on average, to 150%, with a maximum at 385% extension. The lateral-force-versus-displacement curve associated with each manipulation contained information about the bending and tensile properties of each filament. The bending process was dominated by shearing between myosin dimers and yielded a shear modulus between 3 and 13 MPa. Maximum tension along the stretched filaments was observed at ∼ 200% extension and varied between 8 and 17 nN. Based on current models of thick filament structure, these variations can be attributed to cross-links between myosin dimers distributed along the filament. 相似文献
2.
Hiroyuki Iwamoto 《Journal of molecular biology》2009,390(1):99-192
Upon activation of living or skinned vertebrate skeletal muscle fibers, the sixth X-ray layer-line reflection from actin (6th ALL) is known to intensify, without a shift of its peak position along the layer line. Since myosin attachment to actin is expected to shift the peak towards the meridian, this intensification is considered to reflect the structural change of individual actin monomers in the thin filament. Here, we show that the 6th ALL of skinned insect flight muscles (IFMs) is rather weakened upon isometric calcium activation, and its peak shifts away from the meridian. This suggests that the actin monomers in the two types of muscles change their structures in substantially different manners. The changes that occurred in the 6th ALL of IFM were not diminished by lowering the temperature from 20 to 5 °C, while active force was greatly reduced. The inclusion of 100 μM blebbistatin (a myosin inhibitor) did not affect the changes either. This suggests that calcium binding to troponin C, rather than myosin binding to actin, causes the structural change of IFM actin. 相似文献
3.
Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca2+. Indirect flight muscle has two TnC isoforms: F1 binding a single Ca2+ in the C-domain, and F2 binding Ca2+ in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca2+. We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca2+ concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca2+ was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The Kd was 1.01 μM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle. 相似文献
4.
Coiled-coil nanomechanics and uncoiling and unfolding of the superhelix and alpha-helices of myosin 下载免费PDF全文
The nanomechanical properties of the coiled-coils of myosin are fundamentally important in understanding muscle assembly and contraction. Force spectra of single molecules of double-headed myosin, single-headed myosin, and coiled-coil tail fragments were acquired with an atomic force microscope and displayed characteristic triphasic force-distance responses to stretch: a rise phase (R) and a plateau phase (P) and an exponential phase (E). The R and P phases arise mainly from the stretching of the coiled-coils, with the hinge region being the main contributor to the rise phase at low force. Only the E phase was analyzable by the worm-like chain model of polymer elasticity. Restrained molecular mechanics simulations on an existing x-ray structure of scallop S2 yielded force spectra with either two or three phases, depending on the mode of stretch. It revealed that coiled-coil chains separate completely near the end of the P phase and the stretching of the unfolded chains gives rise to the E phase. Extensive conformational searching yielded a P phase force near 40 pN that agreed well with the experimental value. We suggest that the flexible and elastic S2 region, particularly the hinge region, may undergo force-induced unfolding and extend reversibly during actomyosin powerstroke. 相似文献
5.
M. Barra D. Viggiano P. Ambrosino F. Bloisi F.V. Di Girolamo M.V. Soldovieri M. Taglialatela A. Cassinese 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated.Methods
Here, films of N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments.Results
We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations.Conclusions
Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field.General significance
This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine. 相似文献6.
Fabian Milz Alexander Harder Phillipp Neuhaus Olga Breitkreuz-Korff Volker Walhorn Torben Lübke Dario Anselmetti Thomas Dierks 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Sulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD).Methods
Affinity-chromatography, AFM-single-molecule force spectroscopy (SMFS) and immunofluorescence on living cells were used to analyze specificity, kinetics and structural basis of this interaction.Results
Full-length Sulf1 interacts broadly with sulfated glycosaminoglycans (GAGs) showing, however, higher affinity toward HS and heparin than toward chondroitin sulfate or dermatan sulfate. Strong interaction depends on the presence of Sulf1-substrate groups, as Sulf1 bound significantly weaker to HS after enzymatic 6-O-desulfation by Sulf1 pretreatment, hence suggesting autoregulation of Sulf1/substrate association. In contrast, HD alone exhibited outstanding specificity toward HS and did not interact with chondroitin sulfate, dermatan sulfate or 6-O-desulfated HS. Dynamic SMFS revealed an off-rate of 0.04/s, i.e., ~ 500-fold higher than determined by surface plasmon resonance. SMFS allowed resolving the dynamics of single dissociation events in each force–distance curve. HD subdomain constructs revealed heparin interaction sites in the inner and C-terminal regions of HD.Conclusions
Specific substrate binding of Sulf1 is mediated by HD and involves at least two separate HS-binding sites. Surface plasmon resonance KD-values reflect a high avidity resulting from multivalent HD/heparin interaction. While this ensures stable cell–surface HS association, the dynamic cooperation of binding sites at HD and also the catalytic domain enables processive action of Sulf1 along or across HS chains.General significance
HD confers a novel and highly dynamic mode of protein interaction with HS. 相似文献7.
Hydrophobic lung surfactant proteins B and C (SP-B and SP-C) are critical for normal respiration in vertebrates, and each comprises specific structural attributes that enable the surface-tension-reducing ability of the lipid-protein mixture in lung surfactant. The difficulty in obtaining pure SP-B and SP-C on a large scale has hindered efforts to develop a non-animal-derived surfactant replacement therapy for respiratory distress. Although peptide-based SP-C mimics exhibit similar activity to the natural protein, helical peptide-based mimics of SP-B benefit from dimeric structures. To determine if in vitro surface activity improvements in a mixed lipid film could be garnered without creating a dimerized structural motif, a helical and cationic peptoid-based SP-B mimic was modified by SP-C-like N-terminus alkylation with octadecylamine. “Hybridized” mono- and dialkylated peptoids significantly decreased the maximum surface tension of the lipid film during cycling on the pulsating bubble surfactometer relative to the unalkylated variant. Peptoids were localized in the fluid phase of giant unilamellar vesicle lipid bilayers, as has been described for SP-B and SP-C. Using Langmuir-Wilhelmy surface balance epifluorescence imaging (FM) and atomic force microscopy (AFM), only lipid-alkylated peptoid films revealed micro- and nanostructures closely resembling films containing SP-B. AFM images of lipid-alkylated peptoid films showed gel condensed-phase domains surrounded by a distinct phase containing “nanosilo” structures believed to enhance re-spreading of submonolayer material. N-terminus alkylation may be a simple, effective method for increasing lipid affinity and surface activity of single-helix SP-B mimics. 相似文献
8.
Antigen B (AgB) is a major protein component of the Echinococcus granulosus metacestode. It is oligomeric and this raises several questions regarding the subunit structure and composition of AgB. Several genes that encode different AgB subunits have been identified, and some of these have been cloned and expressed to produce recombinant subunits. The study of these recombinant subunits may provide new insights into the structure, physical-chemical properties, and functional aspects of AgB. Like native AgB, the AgB8/1, AgB8/2, and AgB8/3 recombinant subunits produced in our laboratory form 120-160 kDa oligomers that have stable secondary structures, are strongly antigenic and immunogenic, and selectively bind hydrophobic compounds. Here, we review these results and discuss their implications for the elucidation of the structure and function of AgB. This includes a possible role for AgB in host-parasite interactions. 相似文献
9.
The cysteine and glycine-rich protein 3 (CSRP3) plays an important role in the myofiber differentiation. Here, we identified five SNVs in all exon and intron regions of the CSRP3 gene using DNA sequencing, PCR-RFLP and forced-PCR-RFLP methods in 554 cattle. Four of the five SNVs were significantly associated with growth performance and carcass traits of the cattle. In addition, we evaluated haplotype frequency and linkage disequilibrium coefficient of five sequence variants. The result of haplotype analysis demonstrated 28 haplotypes present in Qinchuan and two haplotypes in Chinese Holstein. Only haplotypes 1 and 8 were being shared by two populations, haplotype 14 had the highest haplotype frequency in Qinchuan (17.4%) and haplotype 8 had the highest haplotype frequency in Chinese Holstein (94.4%). Statistical analyses of combined genotypes indicated that some combined genotypes were significantly or highly significantly associated with growth and carcass traits in the Qinchuan cattle population. qPCR analyses also showed that bovine CSRP3 gene was exclusively expressed in longissimus dorsi muscle and heart tissues. The data support the high potential of the CSRP3 as a marker gene for the improvement of growth performance and carcass traits in selection programs. 相似文献