首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

2.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

3.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

4.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

5.
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity.  相似文献   

6.
N-Acetyl-l-glutamate kinase (NAGK), the paradigm enzyme of the amino acid kinase family, catalyzes the second step of arginine biosynthesis. Although substrate binding and catalysis were clarified by the determination of four crystal structures of the homodimeric Escherichia coli enzyme (EcNAGK), we now determine 2 Å resolution crystal structures of EcNAGK free from substrates or complexed with the product N-acetyl-l-glutamyl-5-phosphate (NAGP) and with sulfate, which reveal a novel, very open NAGK conformation to which substrates would associate and from which products would dissociate. In this conformation, the C-domain, which hosts most of the nucleotide site, rotates ∼ 24°-28° away from the N-domain, which hosts the acetylglutamate site, whereas the empty ATP site also exhibits some changes. One sulfate is found binding in the region where the β-phosphate of ATP normally binds, suggesting that ATP is first anchored to the β-phosphate site, before perfect binding by induced fit, triggering the shift to the closed conformation. In contrast, the acetylglutamate site is always well formed, although its β-hairpin lid is found here to be mobile, being closed only in the subunit of the EcNAGK-NAGP complex that binds NAGP most strongly. Lid closure appears to increase the affinity for acetylglutamate/NAGP and to stabilize the closed enzyme conformation via lid-C-domain contacts. Our finding of NAGP bound to the open conformation confirms that this product dissociates from the open enzyme form and allows reconstruction of the active center in the ternary complex with both products, delineating the final steps of the reaction, which is shown here by site-directed mutagenesis to involve centrally the invariant residue Gly11.  相似文献   

7.
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-l,l-diaminopimelic acid to l,l-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.  相似文献   

8.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

9.
The Hypocrea jecorina LXR1 was described as the first fungal l-xylulose reductase responsible for NADPH dependent reduction of l-xylulose to xylitol in l-arabinose catabolism. Phylogenetic analysis now reveals that LXR1 forms a clade with fungal d-mannitol 2-dehydrogenases. Lxr1 and the orthologous Aspergillus nigermtdA are not induced by l-arabinose but expressed at low levels during growth on different carbon sources. Deletion of lxr1 does not affect growth on l-arabinose and l-xylulose reductase activity remains unaltered whereas d-mannitol 2-dehydrogenase activities are reduced. We conclude that LXR1 is a d-mannitol 2-dehydrogenase and that a true LXR1 is still awaiting discovery.  相似文献   

10.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

11.
Auricyanide [Au(CN)4] interaction with biologically important thiols, thioether and selenoether were carried out and monitored using 1H, 13C NMR and UV spectroscopy. These ligands include l-cysteine, glutathione, captopril, l-methionine and dl-seleno-methionine. Thiols show very strong affinity to be oxidized into the disulfide by auricyanide, which gets reduced to aurocyanide [Au(CN)2]. l-cysteine reaction mechanism with [Au(CN)4] was found to be dependent on reactants mole ratio. While l-methionine was completely inert toward auricyanide, dl-Se-methionine showed some reactivity with [Au(CN)4] after raising solution pH to 12 that facilitated cyanide exchange.  相似文献   

12.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule.  相似文献   

13.
Somatic angiotensin I-converting enzyme (s-ACE) plays a central role in blood pressure regulation and has been the target of most antihypertensive drugs. A displacement isothermal titration calorimetry method has been used to accurately determine the binding constant of three strong s-ACE inhibitors. Under the experimental conditions studied in this work, the relative potency of the inhibitors was determined to be enalaprilat>lisinopril>captopril. We analyze the thermodynamic behaviour of the binding process using the new structural information provided by the ACE structures, as well as the conformational changes that occur upon binding.  相似文献   

14.
Lim YR  Yeom SJ  Kim YS  Oh DK 《Bioresource technology》2011,102(5):4277-4280
The optimum conditions for the production of l-arabinose from debranched arabinan were determined to be pH 6.5, 75 °C, 20 g l−1 debranched arabinan, 42 U ml−1 endo-1,5-α-l-arabinanase, and 14 U ml−1 α-l-arabinofuranosidase from Caldicellulosiruptor saccharolyticus and the conditions for sugar beet arabinan were pH 6.0, 75 °C, 20 g l−1 sugar beet arabinan, 3 U ml−1 endo-1,5-α-l-arabinanase, and 24 U ml−1 α-l-arabinofuranosidase. Under the optimum conditions, 16 g l−1l-arabinose was obtained from 20 g l−1 debranched arabinan or sugar beet arabinan after 120 min, with a hydrolysis yield of 80% and a productivity of 8 g l−1 h−1. This is the first reported trial for the production of l-arabinose from the hemicellulose arabinan by the combined use of endo- and exo-arabinanases.  相似文献   

15.
An efficient and practical route for the large-scale synthesis of 2-deoxy-L-erythro-pentose (2-deoxy-L-ribose) starting from L-arabinose was developed using Barton-type free-radical deoxygenation reaction as a key step. The radical precursor, a phenoxythiocarbonyl ester, was prepared in situ, and the most efficient deoxygenation was achieved by slow addition of tributyltin hydride to the reaction mixture.  相似文献   

16.
Dominik Mojzita 《FEBS letters》2010,584(16):3540-3544
l-Xylulose reductase is part of the eukaryotic pathway for l-arabinose catabolism. A previously identified l-xylulose reductase in Hypocrea jecorina turned out to be not the ‘true’ one since it was not upregulated during growth on l-arabinose and the deletion strain showed no reduced l-xylulose reductase activity but instead lost the d-mannitol dehydrogenase activity [17]. In this communication we identified the ‘true’ l-xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on l-arabinose and the deletion results in a strain lacking the NADPH-specific l-xylulose reductase activity and having reduced growth on l-arabinose. The purified enzyme had a Km for l-xylulose of 25 mM and a νmax of 650 U/mg.  相似文献   

17.
l-Xylulose was used as a raw material for the production of l-xylose with a recombinantly produced Escherichia colil-fucose isomerase as the catalyst. The enzyme had a very alkaline pH optimum (over 10.5) and displayed Michaelis-Menten kinetics for l-xylulose with a Km of 41 mM and a Vmax of 0.23 μmol/(mg min). The half-lives determined for the enzyme at 35 °C and at 45 °C were 6 h 50 min and 1 h 31 min, respectively. The reaction equilibrium between l-xylulose and l-xylose was 15:85 at 35 °C and thus favored the formation of l-xylose. Contrary to the l-rhamnose isomerase catalyzed reaction described previously [14]l-lyxose was not detected in the reaction mixture with l-fucose isomerase. Although xylitol acted as an inhibitor of the reaction, even at a high ratio of xylitol to l-xylulose the inhibition did not reach 50%.  相似文献   

18.
In order to ascertain whether and how mitochondria can produce hydrogen peroxide (H2O2) as a result of l-lactate addition, we monitored H2O2 generation in rat liver mitochondria and in submitochondrial fractions free of peroxisomal and cytosolic contamination. We found that H2O2 is produced independently on the respiratory chain with 1:1 stoichiometry with pyruvate, due to a putative flavine-dependent l-lactate oxidase restricted to the intermembrane space. The l-lactate oxidase reaction shows a hyperbolic dependence on l-lactate concentration and is inhibited by NAD+ in a competitive manner, being the enzyme different from the l-lactate dehydrogenase isoenzymes as shown by their pH profiles.  相似文献   

19.
An angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-Deoxy-d-ribose, a degradation product of thymidine generated by TP enzymatic activity, partially prevented hypoxia-induced apoptosis. 2-Deoxy-d-ribose inhibited hypoxia-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not c-jun NH(2)-terminal kinase/stress-activated protein kinase in human leukemia HL-60 cells. 2-Deoxy-d-ribose also suppressed the levels of Bax attached to mitochondria under hypoxic conditions. SB203580, a specific inhibitor of the p38 MAPK, suppressed the hypoxia-induced apoptosis of HL-60 cells. These findings suggest that one of the molecular bases for resistance to hypoxia-induced apoptosis conferred by 2-deoxy-d-ribose is the inhibition of the p38 signaling pathway. The expression levels of TP are elevated in many malignant solid tumors and thus the 2-deoxy-d-ribose generated by TP in these tumors may play an important role in tumor progression by preventing hypoxia-induced apoptosis.  相似文献   

20.
l-threonine is an essential amino acid for mammals and as such has a wide and expanding application in industry with a fast growing market demand. The major method of production of l-threonine is microbial fermentation. To optimize l-threonine production the fundamental solution is to develop robust microbial strains with high productivity and stability. Metabolic engineering provides an effective alternative to the random mutation for strain development. In this review, the updated information on genetics and molecular mechanisms for regulation of l-threonine pathways in Escherichia coli and Corynebacterium glutamicum are summarized, including l-threonine biosynthesis, intracellular consumption and trans-membrane export. Upon such knowledge, genetically defined l-threonine producing strains have been successfully constructed, some of which have already achieved the productivity of industrial producing strains. Furthermore, strategies for strain construction are proposed and potential problems are identified and discussed. Finally, the outlook for future strategies to construct industrially advantageous strains with respect to recent advances in biology has been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号