首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Signature HIV-1 integrase mutations associated with clinical raltegravir resistance involve 1 of 3 primary genetic pathways, Y143C/R, Q148H/K/R and N155H, the latter 2 of which confer cross-resistance to elvitegravir. In accord with clinical findings, in vitro drug resistance profiling studies with wild-type and site-directed integrase mutant viruses have shown significant fold increases in raltegravir and elvitegravir resistance for the specified viral mutants relative to wild-type HIV-1. Dolutegravir, in contrast, has demonstrated clinical efficacy in subjects failing raltegravir therapy due to integrase mutations at Y143, Q148 or N155, which is consistent with its distinct in vitro resistance profile as dolutegravir’s antiviral activity against these viral mutants is equivalent to its activity against wild-type HIV-1. Kinetic studies of inhibitor dissociation from wild-type and mutant integrase-viral DNA complexes have shown that dolutegravir also has a distinct off-rate profile with dissociative half-lives substantially longer than those of raltegravir and elvitegravir, suggesting that dolutegravir’s prolonged binding may be an important contributing factor to its distinct resistance profile. To provide a structural rationale for these observations, we constructed several molecular models of wild-type and clinically relevant mutant HIV-1 integrase enzymes in complex with viral DNA and dolutegravir, raltegravir or elvitegravir. Here, we discuss our structural models and the posited effects that the integrase mutations and the structural and electronic properties of the integrase inhibitors may have on the catalytic pocket and inhibitor binding and, consequently, on antiviral potency in vitro and in the clinic.  相似文献   

3.
In recent years, HIV-1 integrase (IN) has become an established target in the field of antiretroviral drug discovery. However, its sole clinically approved inhibitor, the integrase strand transfer inhibitor (INSTI) raltegravir, has a surprisingly low genetic barrier for resistance. Furthermore, the only two other integrase inhibitors currently in advanced clinical trials, elvitegravir and dolutegravir, share its mechanism of action and certain resistance pathways. To maintain a range of treatment options, drug discovery efforts are now turning toward allosteric IN inhibitors, which should be devoid of cross-resistance with INSTIs. As IN requires a precise and dynamic equilibrium between several oligomeric species for its activities, the modulation of this equilibrium presents an interesting allosteric target. We report on the development, characterization, and validation of an AlphaScreen-based assay for high-throughput screening for modulators of HIV-1 IN dimerization. Compounds identified as hits in this assay proved to act as allosteric IN inhibitors. Additionally, the assay offers a flexible platform to study IN dimerization.  相似文献   

4.
5.
Binding aspects of baicalein to HIV-1 integrase   总被引:8,自引:0,他引:8  
Human immunodeficiency virus type 1 (HIV-1) integrase is an essential enzyme in the life cycle of the virus. It is responsible for catalyzing the insertion of the viral genome into the host cell chromosome. This integrase is an attractive target for the design of a HIV antiviral drug, because integrase has no human counterpart. In order to know the interaction mode of HIV-1 integrase with its inhibitor, we investigated the effect of the inhibitor, baicalein, on the conformation of the HIV-1 integrase catalytic domain [IN-(50-212/F185K)] using fluorescence and circular dichroism (CD) spectroscopy. We found that baicalein binds to the hydrophobic region of the HIV-1 integrase catalytic core domain. This binding of baicalein induces the conformational change of the enzyme. We also found that the binding ratio of baicalein to the HIV-1 integrase catalytic domain is 2:1.  相似文献   

6.
HIV-1整合酶是HIV-1生命周期中必不可少的酶之一,已成为目前最具潜力的抗HIV药物设计的靶点之一。2007年,Merk公司研发的MK-5108作为首个整合酶抑制剂药物被美国食品药物管理局批准上市,标志着整合酶抑制剂研究的重大突破,也激发了抗HIV-1整合酶抑制剂研究的新一轮高潮。计算机辅助药物设计(computer-aided drug design,CADD)具有效率高、成本低等特点,基于计算机辅助手段合理药物设计已取得了很大的进展。文章综述了近几年来计算机辅助设计抗HIV整合酶抑制剂及耐药机理方面的研究进展。  相似文献   

7.

Introduction

Raltegravir is an HIV-1 integrase inhibitor currently used in treatment-experienced HIV-1-infected patients resistant to other drug classes. In order to assess its central nervous system penetration, we measured raltegravir concentrations in cerebrospinal fluid (CSF) and plasma in subjects receiving antiretroviral treatment regimens containing this drug.

Methods

Raltegravir concentrations were determined by liquid chromatography tandem mass spectrometry in 25 paired CSF and plasma samples from 16 HIV-1-infected individuals. The lower limit of quantitation was 2.0 ng/ml for CSF and 10 ng/ml for plasma.

Results

Twenty-four of the 25 CSF samples had detectable raltegravir concentrations with a median raltegravir concentration of 18.4 ng/ml (range, <2.0–126.0). The median plasma raltegravir concentration was 448 ng/ml (range, 37–5180). CSF raltegravir concentrations correlated with CSF:plasma albumin ratios and CSF albumin concentrations.

Conclusions

Approximately 50% of the CSF specimens exceeded the IC95 levels reported to inhibit HIV-1 strains without resistance to integrase inhibitors. In addition to contributing to control of systemic HIV-1 infection, raltegravir achieves local inhibitory concentrations in CSF in most, but not all, patients. Blood-brain and blood-CSF barriers likely restrict drug entry, while enhanced permeability of these barriers enhances drug entry.  相似文献   

8.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the life cycle of the virus and is an attractive target for the development of new drugs useful in acquired immunodeficiency syndrome multidrug therapy. Starting from the crystal structure of the 5CITEP inhibitor bound to the active site in the catalytic domain of the HIV-1 IN, two different molecular dynamics simulations in water have been carried out. In the first simulation the wild-type IN was used, whereas in the second one the double mutation T66I/M154I, described to lead to drug resistance, was introduced in the protein. Compelling differences have been observed in these two structures during analyses of the molecular dynamics trajectories, particularly in the inhibitor binding modes and in the conformational flexibility of the loop (residues 138-149) located near the three catalytic residues in the active site (Asp(64), Asp(116), Glu(152)). Because the conformational flexibility of this region is important for efficient biological activity and its behavior is quite different in the two models, we suggest a hypothetical mechanism for the inhibition and drug resistance of HIV-1 IN. These results can be useful for the rational design of more potent and selective integrase inhibitors and may allow for the design of inhibitors that will be more robust against known resistance mutations.  相似文献   

9.
Merck's MK-0518, known as raltegravir, has recently become the first FDA-approved HIV-1 integrase (IN) inhibitor and has since risen to blockbuster drug status. Much research has in turn been conducted over the last few years aimed at recreating but optimizing the compound's interactions with the protein. Resulting me-too drugs have shown favorable pharmacokinetic properties and appear drug-like but, as expected, most have a highly similar interaction with IN to that of raltegravir. We propose that, based upon conclusions drawn from our docking studies illustrated herein, most of these me-too MK-0518 analogues may experience a low success rate against raltegravir-resistant HIV strains. As HIV has a very high mutational competence, the development of drugs with new mechanisms of inhibitory action and/or new active substituents may be a more successful route to take in the development of second- and third-generation IN inhibitors.  相似文献   

10.
A series of seven novel, rationally designed N-substituted 3-{3,5-dimethylfuro[3,2-g]coumarin-6-yl}propanamides have been prepared as potential HIV-1 integrase (IN) inhibitors via a five-step pathway commencing with resorcinol and diethyl 2-acetylglutarate, and the HIV-1 IN inhibition potential of these compounds has been examined relative to raltegravir, a known HIV-1 IN inhibitor.  相似文献   

11.
Xue W  Qi J  Yang Y  Jin X  Liu H  Yao X 《Molecular bioSystems》2012,8(8):2135-2144
Raltegravir is the first FDA-approved drug targeting the strand transfer step of HIV-1 integration. However, the rapid emergence of viral strains that are highly resistant to raltegravir has become a critical problem. Unfortunately, the detailed molecular mechanism of how HIV-1 integrase (IN) mutations actually confer drug resistance is not well understood. In the present study, starting from our previously constructed complex of HIV-1 IN and viral DNA, we employed molecular dynamics (MD) simulation and molecular mechanics generalized Born surface area (MM-GBSA) calculation, to uncover the molecular mechanism behind the resistant mechanism of HIV-1 IN to raltegravir. The values of the calculated binding free energy follow consistently the experimentally observed ranking of resistance levels. A detailed analysis of the results of MD simulation suggests that the Tyr143 located in the 140s loop (e.g., residues from Gly140 to Gly149) is a key anchoring residue that leads to stable raltegravir binding. The decrease in the interaction at this residue is one of the key reasons responsible for the resistance of HIV-1 IN to raltegravir. Additionally, the calculation results also proved that the 3' adenosine flip in different conformations in the wild-type and mutant HIV-1 IN-viral DNA complexes play an important role in raltegravir binding. Our results could provide a structural and energetic understanding of the raltegravir-resistant mechanism at the atomic level and provide some new clues on how to design new drugs that may circumvent the known resistance mutations.  相似文献   

12.
整合酶被认为是抗HIV-1药物研究的理想靶点之一。为了建立便捷高效的整合酶链转移反应抑制剂筛选方法,首先将HIV-1整合酶原核表达载体pNL-IN转化入大肠杆菌感受态细胞BL21(DE3)进行原核表达,并用镍琼脂糖凝胶进行亲和纯化,获得了纯度和活性均较高的整合酶重组蛋白;然后设计了生物素标记的供体DNA和FITC标记的靶DNA,用链霉亲和素磁珠捕获反应体系中的DNA产物;最后用荧光分析仪检测DNA产物的荧光信号,并计算待测样品的抑制率。用已知整合酶抑制剂S-1360和MK-0518对筛选方法进行了验证,测定结果与已有实验数据相当,表明本筛选方法能够有效应用于HIV-1整合酶链转移反应抑制剂的筛选。与现有的整合酶链转移反应抑制剂筛选方法相比,本筛选方法步骤更为简化、耗时更短、成本更低。  相似文献   

13.
A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure.  相似文献   

14.
HIV-1复制需要HIV-1整合酶将其环状DNA整合进宿主DNA中,这其中包括2个重要反应,即“3′-加工”和“链转移”,两者均由HIV-1整合酶催化完成.阻断其中的任一反应,都能达到抑制HIV-1复制的目的.因此,了解HIV-1整合酶的完整结构和聚合状态,对深入探讨其作用机理及设计新型抑制剂具有重要的指导作用.然而,迄今为止仅有HIV-1整合酶单独结构域的晶体结构可供参考,而其全酶晶体结构尚未获得解析.本研究利用分子模拟技术,通过蛋白质 蛋白质/DNA分子对接、动力学模拟等方法,构建了全长整合酶四聚体的结构模型、HIV-1 DNA与整合酶复合物的结构模型,进一步从理论上证实HIV-1整合酶是以四聚体形态发挥催化作用,明确“3′-加工”和“链转移”在HIV-1整合酶上的催化位点.同时,通过与作用机理相似的细菌转座子Tn5转座酶等的结构比对,推测HIV-1整合酶的核心结构域中应有第2个Mg2+存在,其位置螯合于Asp64与Glu152之间.在HIV-1整合酶结构研究的基础上,有望进一步设计出新的抗艾滋病药物.  相似文献   

15.
Lee MC  Deng J  Briggs JM  Duan Y 《Biophysical journal》2005,88(5):3133-3146
HIV-1 integrase is one of the three essential enzymes required for viral replication and has great potential as a novel target for anti-HIV drugs. Although tremendous efforts have been devoted to understanding this protein, the conformation of the catalytic core domain around the active site, particularly the catalytic loop overhanging the active site, is still not well characterized by experimental methods due to its high degree of flexibility. Recent studies have suggested that this conformational dynamics is directly correlated with enzymatic activity, but the details of this dynamics is not known. In this study, we conducted a series of extended-time molecular dynamics simulations and locally enhanced sampling simulations of the wild-type and three loop hinge mutants to investigate the conformational dynamics of the core domain. A combined total of >480 ns of simulation data was collected which allowed us to study the conformational changes that were not possible to observe in the previously reported short-time molecular dynamics simulations. Among the main findings are a major conformational change (>20 A) in the catalytic loop, which revealed a gatinglike dynamics, and a transient intraloop structure, which provided a rationale for the mutational effects of several residues on the loop including Q(148), P(145), and Y(143). Further, clustering analyses have identified seven major conformational states of the wild-type catalytic loop. Their implications for catalytic function and ligand interaction are discussed. The findings reported here provide a detailed view of the active site conformational dynamics and should be useful for structure-based inhibitor design for integrase.  相似文献   

16.
It has been shown that L-731988, a potent integrase inhibitor, targets a conformation of the integrase enzyme formed when complexed to viral DNA, with the 3′-end dinucleotide already cleaved. It has also been shown that diketo acid inhibitors bind to the strand transfer complex of integrase and are competitive with the host target DNA. However, published X-ray structures of HIV integrase do not include the DNA; thus, there is a need to develop a model representing the strand transfer complex. In this study, we have constructed an active-site model of the HIV-1 integrase complexed with viral DNA using the crystal structure of DNA-bound transposase and have identified a binding mode for inhibitors. This proposed binding mechanism for integrase inhibitors involves interaction with a specific Mg2 + in the active site, accentuated by a hydrophobic interaction in a cavity formed by a flexible loop upon DNA binding. We further validated the integrase active-site model by selectively mutating key residues predicted to play an important role in the binding of inhibitors. Thus, we have a binding model that is applicable to a wide range of potent integrase inhibitors and is consistent with the available resistant mutation data.  相似文献   

17.
18.
The integrase and transposase enzymes of retrovirus and transposons, respectively, share the catalytic DDE domain. In vitro assays showed that inhibitors of HIV-1 integrase generally inhibit the mariner Mos1 transposase. Using a Drosophila strain in which the mobilisation of the mariner element can be quantified by mosaic eyes, we showed that flies maintained in medium containing 210 µM to 4 mM of raltegravir, or 1 or 2 mM of dolutegravir, which are HIV-1 integrase inhibitor used in AIDS treatment, have 23–33% less somatic mobilisation in mosaic eyes when treated with raltegravir and 28–32% when treated with dolutegravir. The gene expression of the mariner transposase gene, estimated by qPCR, is similar among treated and control flies. The results suggest that in vivo assays using Drosophila can be used as a primary screening of inhibitory drugs for transposase and retroviral integrase. The advantages of this assay are that it is easy, quick, cheap and is an in vivo test, meaning that the tested substance has to have been taken in by cells and has arrived at the target site, which is not the case when in vitro assays are applied.  相似文献   

19.
二酮酸类化合物(DKAs)是目前最有前景的HIV-1整合酶(integrase, IN)抑制剂.为了解DKAs引起的多种耐药株共有的耐药性机理,选择3种S-1360引起的IN耐药突变体,用分子对接和分子动力学模拟,研究了野生型和突变型IN与S-1360的结合模式,基于该结合模式探讨了3种耐药突变体所共有的耐药性机理.结果表明:在突变体中,S-1360结合到耐药突变IN核心区中的位置靠近功能loop 3区却远离与 DNA结合的关键残基,结合位置不同导致S-1360的抑制作用部分丧失;残基138到166区域的柔性对IN发挥生物学功能很重要,S-1360能与DNA结合的关键残基N155及K159形成氢键,这2个氢键作用降低了该区域的柔性,突变体中无类似氢键,因而该区域柔性增高;在突变体中,S-1360的苯环远离病毒DNA结合区,不能阻止病毒DNA末端暴露给宿主DNA;T66I突变导致残基Ⅰ的长侧链占据IN的活性口袋,阻止抑制剂以与野生型中相同的方式结合到活性中心,这均是产生抗药性的重要原因.这些模拟结果与实验结果吻合,可为抗IN的抑制剂设计和改造提供帮助.  相似文献   

20.
The HIV‐1 integrase is an attractive target for the therapeutics development against AIDS, as no host homologue of this protein has been identified. The integrase strand transfer inhibitors (INSTIs), including raltegravir, specifically target the second catalytic step of the integration process by binding to the DDE motif of the catalytic site and coordinating Mg2+ ions. Recent X‐ray crystallographic structures of the integrase/DNA complex from prototype foamy virus allowed to investigate the role of the different partners (integrase, DNA, Mg2+ ions, raltegravir) in the complex stability using molecular dynamics (MD) simulations. The presence of Mg2+ ions is found to be essential for the stability, whereas the simultaneous presence of raltegravir and Mg2+ ions has a destabilizing influence. A homology model of HIV‐1 integrase was built on the basis of the X‐ray crystallographic information, and protein marker residues for the ligand binding were detected by clustering the docking poses of known HIV‐1 integrase inhibitors on the model. Interestingly, we had already identified some of these residues to be involved in HIV‐1 resistance mutations and in the stabilization of the catalytic site during the MD simulations. Classification of protein conformations along MD simulations, as well as of ligand docking poses, was performed by using an original learning method, based on self‐organizing maps. This allows us to perform a more in‐depth investigation of the free‐energy basins populated by the complex in MD simulations on the one hand, and a straightforward classification of ligands according to their binding residues on the other hand. Proteins 2014; 82:466–478. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号