首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A great number of epidemiological studies have demonstrated that the frequency of the epsilon4 allele of the apolipoprotein E gene (APOE) is markedly higher in sporadic and in familial late onset Alzheimer disease (AD). In the frontal cortex of AD patients, oxidative damage is elevated. We address the hypothesis that the APOE genotype and reactive oxygen-mediated damage are linked in the frontal cortex of AD patients. We have related the APOE genotype to the levels of lipid oxidation (LPO) and to the antioxidant status, in frontal cortex tissues from age-matched control and AD cases with different APOE genotypes. LPO levels were significantly elevated in tissues from Alzheimer's cases which are homozygous for the epsilon4 allele of APOE, compared to AD epsilon3/epsilon3 cases and controls. Activities of enzymatic antioxidants, such as catalase and glutathione peroxidase (GSH-PX), were also higher in AD cases with at least one epsilon4 allele of APOE, while superoxide dismutase (SOD) activity was unchanged. In the frontal cortex, the concentration of apoE protein was not different between controls and AD cases, and was genotype independent. The Ginkgo biloba extract (EGb 761), the neurosteroid dehydroepiandrosterone (DHEA) and human recombinant apoE3 (hapoE3rec) were able to protect control, AD epsilon3/epsilon3 and epsilon3/epsilon4 cases against hydrogen peroxide/iron-induced LPO, while hapoE4rec was completely ineffective. Moreover, EGb 761 and DHEA had no effect in homozygous epsilon4 cases. These results demonstrate that oxidative stress-induced injury and protection by antioxidants in the frontal cortex of AD cases are related to the APOE genotype.  相似文献   

2.
Allele epsilon4 of the nuclear APOE gene is a leading genetic risk factor for sporadic Alzheimer's disease (AD). Moreover, an allele-specific effect of APOE isoforms on neuronal cell oxidative death is known. Because of the role of the mitochondrial genome (mtDNA) in oxidative phosphorylation and oxidative stress, an interaction between APOE polymorphism and mtDNA inherited variability in the genetic susceptibility to sporadic AD can be hypothesized. We have explored this hypothesis by analyzing mtDNA germline variants (mtDNA haplogroups) in a sample of AD patients (213 subjects) genotyped for APOE and classified as APOE epsilon4 carriers and non-carriers. We found that the frequency distribution of mtDNA haplogroups is different between epsilon4 carriers and non-carriers (P=0.018), thus showing non-random association between APOE and mtDNA polymorphisms. The same analysis, carried out in two samples of healthy subjects (179 age-matched and 210 individuals aged more than 100 years), showed independence between epsilon4 allele and mtDNA haplogroups. Therefore, the APOE/mtDNA interaction is restricted to AD and may affect susceptibility to the disease. In particular, some mtDNA haplogroups (K and U) seem to neutralize the harmful effect of the APOE epsilon4 allele, lowering the epsilon4 odds ratio from statistically significant to non-significant values.  相似文献   

3.
Allele epsilon 4 of the apolipoprotein E (APOE) gene is associated with higher risk of Alzheimer's disease (AD) in many, though not all, ethnic groups. The APOE allele and genotype frequency distributions were studied in 207 AD patients without cerebrovascular disorders, 62 AD patients with cerebrovascular disorders (combined AD), and 206 control individuals (ethnic Russians from the Russian population). The frequency of allele epsilon 4 in patients with early-onset and late-onset AD was three times higher than in control individuals (p < 0.000001). Compared with control people, patients with cerebrovascular disorders displayed a twofold higher frequency of allele epsilon 4; the difference between the two groups was significant (p = 0.0019). Relative risk of AD in carriers of allele epsilon 4 was five times higher than in carriers of alleles epsilon 2 and epsilon 3 (p < 0.000001). Allele epsilon 2 had a protective effect with respect to AD onset until 65 years of age (p = 0.015). Thus, APOE allele epsilon 4 proved to be a universal factor of early-onset, late-onset, and combined AD in ethnic Russians from Russia.  相似文献   

4.
The epsilon 4 allele of the apolipoprotein E locus (APOE) has been found to be an important predictor of Alzheimer disease (AD). However, linkage analysis has not clarified the role of APOE in the transmission of AD. The results of the current study provide evidence that the pattern of transmission of memory disorders differs in nuclear families in which the AD-affected proband did carry an epsilon 4 allele versus those families in which the AD-affected proband did not carry an epsilon allele. Further, risk of AD due to APOE genotype in the probands is modified by family history of memory disorders, suggesting gene-by-gene interactions. Family history remained a significant predictor of AD for affected probands with some, but not all, APOE genotypes in a logistic regression analysis. Though nonadditive in the prediction of AD, APOE genotype and family history acted additively in the prediction of age at AD onset. The results of complex segregation analysis were inconsistent with Mendelian segregation of memory disorders both in families of affected probands who did or did not carry an epsilon 4 allele, yet these two groups had significantly different parameter estimates for their transmission models. These results are consistent with gene-by-gene interactions, but also could result from common elements in the familial environment.  相似文献   

5.
A pathological feature of Alzheimer's disease (AD) is an area-specific neuronal loss that may be caused by excitotoxicity-related synaptic dysfunction. Relative expression levels of synaptophysin, dynamin I, complexins I and II, N-cadherin, and alphaCaMKII were analysed in human brain tissue from AD cases and controls in hippocampus, and inferior temporal and occipital cortices. Synaptophysin and dynamin I are presynaptic terminal proteins not specific to any neurotransmitter system whereas complexin II, N-cadherin, and alphaCaMKII are specific for excitatory synapses. Complexin I is a presynaptic protein localised to inhibitory synapses. There were no significant differences in synaptophysin, dynamin I, N-cadherin, or alphaCaMKII protein levels between AD cases and controls. The complexin proteins were both markedly lower in AD cases than in controls (P < 0.01). Cases were also categorised by APOE genotype. Averaged across areas there was a 36% lowering of presynaptic proteins in AD cases carrying at least one epsilon4 allele compared with in AD cases lacking the epsilon4 allele. We infer that synaptic protein level is not indicative of neuronal loss, but the synaptic dysfunction may result from the marked relative loss of the complexins in AD, and lower levels of presynaptic proteins in AD cases with the APOE epsilon4 allele.  相似文献   

6.
7.
Apolipoprotein E: risk factor for Alzheimer disease.   总被引:13,自引:5,他引:8       下载免费PDF全文
The apolipoprotein E gene (APOE) has three common alleles (epsilon 2, epsilon 3, and epsilon 4) that determine six genotypes in the general population. In this study, we examined 77 patients with late-onset Alzheimer disease (AD), along with an equal number of age- and sex-matched controls, for an association with the APOE-epsilon 4 allele. We show that the frequency of this allele among AD patients was significantly higher than that among the control population (.351 vs. .130, P = .000006). The genotype frequencies also differed between the two groups (P = .0002), with the APOE-epsilon 4/epsilon 3 genotype being the most common in the AD group and the APOE-epsilon 3/epsilon 3 being the most common in the control group. In the AD group, homozygosity for epsilon 4 was found in nine individuals, whereas none was found in the control group. The odds ratio for AD, when associated with one or two epsilon 4 alleles, was 4.6 (95% confidence interval [CI] 1.9-12.3), while the odds ratio for AD, when associated with heterozygosity for APOE-epsilon 4, was 3.6 (95% CI 1.5-9.8). Finally, the median age at onset among the AD patients decreased from 83 to 78 to 74 years as the number of APOE-epsilon 4 alleles increased from 0 to 1 to 2, respectively (test for trend, P = .001). Our data, which are in agreement with recent reports, suggest that the APOE-epsilon 4 allele is associated with AD and that this allelic variant may be an important risk factor for susceptibility to AD in the general population.  相似文献   

8.
Late-onset Alzheimer disease (AD) is associated with the apolipoprotein E (APOE)-epsilon4 allele. In late-onset familial AD, women have a significantly higher risk of developing the disease than do men. The aim of this study was to determine whether the gender difference in familial AD is a function of APOE genotype. We studied 58 late-onset familial AD kindreds. Kaplan-Meier survival analysis was used to assess genotype-specific distributions of age at onset. Odds ratios were estimated by logistic regression with adjustment for age and by conditional logistic regression with stratification on families. All methods detected a significant gender difference for the epsilon4 heterozygous genotype. In women, epsilon4 heterozygotes had higher risk than those without epsilon4; there was no significant difference between epsilon4 heterozygotes and epsilon4 homozygotes. In men, epsilon4 heterozygotes had lower risk than epsilon4 homozygotes; there was not significant difference between epsilon4 heterozygotes and those without epsilon4. A direct comparison of epsilon4 heterozygous men and women revealed a significant twofold increased risk in women. We confirmed these results in 15 autopsy-confirmed AD kindreds from the National Cell Repository at Indiana University Alzheimer Disease Center. These observations are consistent with the increased incidence of familial AD in women and may be a critical clue to the role of gender in the pathogenesis of AD.  相似文献   

9.
Angiotensin-converting enzyme (ACE) has been reported to show altered activity in patients with neurological diseases. The recent studies found that a 287 bp insertion/deletion (I/D) polymorphism of the ACE gene may be associated with susceptibility to Alzheimer’s disease (AD) but the results have been heterogenous between studies in Europe. In the present study we examined for the first time the association of ACE I/D polymorphism along with APOE genotype in 70 sporadic AD and 126 control subjects in Slovak Caucasians (Central Europe). An increased risk for AD was observed in subjects with at least one APOE*E4 allele (OR=3.99, 95% CI=1.97–8.08). No significant differences for the genotype distribution or the allele frequency were revealed comparing controls and patients for ACE gene. Gene-gene interaction analysis showed increase of the risk to develop AD in subjects carrying both the ACE DD genotype and the APOE*E4 allele (OR=10.32, 95% C.I. 2.67–39.81).  相似文献   

10.
《Free radical research》2013,47(8):569-576
Abstract

A number of evidences indicates oxidative stress as a relevant pathogenic factor in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Considering its recognized major genetic risk factors in AD, apolipoprotein (APO E) has been investigated in several experimental settings regarding its role in the process of reactive oxygen species (ROS) generation. The aim of this work has been to evaluate possible relationships between APO E genotype and plasma levels of selected oxidative stress markers in both AD and MCI patients.

APO E genotypes were determined using restriction enzyme analysis. Plasma levels of oxidative markers, advanced oxidation protein products, iron-reducing ability of plasma and, in MCI, activity of superoxide dismutases were evaluated using spectrophotometric analysis.

We found, compared to controls, increased levels of oxidized proteins and decreased values of plasma-reducing capacity in both AD patients (p < 0.0001) and MCI patients (p < 0.001); the difference between AD and MCI patients was significant only for plasma-reducing capacity (p < 0.0001), the former showing the lowest values. Superoxide dismutase activity was reduced, although not at statistical level, in MCI compared with that in controls. E4 allele was statistically associated (p < 0.05) with AD patients. When comparing different APO E genotype subgroups, no difference was present, as far as advanced oxidation protein products and iron-reducing ability of plasma levels were concerned, between E4 and non-E4 carriers, in both AD and MCI; on the contrary, E4 carriers MCI patients showed significantly decreased (p < 0.05) superoxide dismutase activity with respect to non-E4 carriers.

This study, in confirming the occurrence of oxidative stress in AD and MCI patients, shows how it can be related, at least for superoxide dismutase activity in MCI, to APO E4 allele risk factor.  相似文献   

11.
Apolipoprotein E (APOE) genotype is the single most important determinant to the common form of Alzheimer disease (AD) yet identified. Several studies show that family history of AD is not entirely accounted for by APOE genotype. Also, there is evidence for an interaction between APOE genotype and gender. We carried out a complex segregation analysis in 636 nuclear families of consecutively ascertained and rigorously diagnosed probands in the Multi-Institutional Research in Alzheimer Genetic Epidemiology study in order to derive models of disease transmission which account for the influences of APOE genotype of the proband and gender. In the total group of families, models postulating sporadic occurrence, no major gene effect, random environmental transmission, and Mendelian inheritance were rejected. Transmission of AD in families of probands with at least one epsilon 4 allele best fit a dominant model. Moreover, single gene inheritance best explained clustering of the disorder in families of probands lacking epsilon 4, but a more complex genetic model or multiple genetic models may ultimately account for risk in this group of families. Our results also suggest that susceptibility to AD differs between men and women regardless of the proband's APOE status. Assuming a dominant model, AD appears to be completely penetrant in women, whereas only 62%-65% of men with predisposing genotypes develop AD. However, parameter estimates from the arbitrary major gene model suggests that AD is expressed dominantly in women and additively in men. These observations, taken together with epidemiologic data, are consistent with the hypothesis of an interaction between genes and other biological factors affecting disease susceptibility.  相似文献   

12.
Progressive dysfunction and death of neurons in Alzheimer's dementia is enhanced in patients carrying one or more APOE4 alleles who also display increased presence of oxidative stress markers. Modulation of oxidative stress is a nontraditional and physiologically relevant immunomodulatory function of apolipoprotein E (apoE). Stimulated peritoneal macrophages from APOE-transgenic replacement (APOE-TR) mice expressing only human apoE3 or human apoE4 protein isoforms were utilized as mouse models to investigate the role of apoE protein isoforms and gender in the regulation of oxidative stress. Macrophages from male APOE4/4-TR mice produced significantly higher levels of nitric oxide than from male APOE3/3-TR mice, while macrophages from female APOE3/3-TR and female APOE4/4-TR mice produced the similar levels of nitric oxide. Primary cultures of microglial cells of APOE4 transgenic mice also produced significantly more nitric oxide than microglia from APOE3 transgenic mice. These data suggest a potentially novel mechanism for gender-dependent and apoE isoform-dependent immune responses that parallel the genetic susceptibility of APOE4 carriers for the development of Alzheimer's disease.  相似文献   

13.
Rogaev EI 《Genetika》1999,35(11):1558-1571
Genetic factors are responsible, to a certain degree, for many, if not all, Alzheimer's disease (AD) cases. A certain proportion of early-onset (below 65 years of age) AD cases follows an autosomal dominant mode of inheritance. Three genes were identified whose mutations account for 50-70% of early-onset monogenic AD cases in AD pedigrees. These are the genes of the amyloid precursor protein (APP) and two presenilins (PS I and PS II). The polymorphic variant of apolipoprotein E, APOE epsilon 4, is a genetic causative factor in familial and sporadic cases of various early- and late-onset AD forms (it is found, in general, in 20-50% of all AD cases). The action of the epsilon 4 allele is codominant, with the AD risk increased in homozygotes (epsilon 4/epsilon 4 > epsilon 4 > epsilon 3 or epsilon 2). In contrast to the mutations in the PS I and APP genes, the APOE epsilon 4 allele is not a necessary and sufficient condition for AD development. Mutations in these genes have not been found in a proportion of familial early-onset AD cases and are not causative factors in the majority of late-onset familial and sporadic forms. The genes determining AD are evolutionarily conservative and are expressed in all human tissues as early as at initial ontogenetic stages. This raises the question as to why AD is a progressive disorder affecting certain cerebral regions only at middle or old age. A hypothesis and model are suggested to explain the interaction between evolutionary, ontogenetic, and epigenetic factors of the development of the central nervous system and the products of genes whose mutations result in AD. Findings of different mutant genes indicate that AD is a set of genetic disorders (ADs) with a common pathological manifestation.  相似文献   

14.
Idiopathic Parkinson's disease (PD) is an age-dependent, neurodegenerative condition frequently associated with dementia. Although it is predominantly a sporadic disease, 20-30% of cases are familial, suggesting a complex mode of inheritance. Apolipoprotein E (APOE) allele epsilon4 has been associated with familial and sporadic late-onset senile dementia of the Alzheimer's type. To investigate the role of this gene in the development of dementia associated with PD and age at onset of PD, we evaluated the frequency of APOE gene polymorphism in a sample of PD patients with (n=118) and without (n=167) a family history, as well as matched normal controls (n=96). The PD sample was categorized according to age at onset and presence or absence of dementia. Kaplan-Meier survival analysis was used to plot genotype-specific age at onset distribution curves. Allele frequencies of APOE in PD patients with and without a family history and normal controls were not significantly different. APOE genotypes were also similar between the groups. However, the frequencies of epsilon4 allele and epsilon4/- genotype in the PD group with dementia were more than twofold higher than in normal controls, and the differences were statistically significant. There were no differences in the allele and genotype frequencies of the APOE gene between PD groups with different age at onset. The familial PD had significantly earlier age at onset than sporadic PD (Log-rank test, P=0.027). The age at onset distribution curves for different genotype groups were similar, and their differences were not statistically significant (P=0.38). After the Bonferroni's correction for multiple tests, the positive results are not significant at the P<0.05 level. We conclude that APOE does not play an important role in susceptibility to PD or age at onset of PD, but may play a role in dementia associated with PD in our sample.  相似文献   

15.
The epsilon 4 allele of the apolipoprotein E gene (ApoE) is associated with Alzheimer's disease (AD). The extent of oxidative damage in AD brains correlates with the presence of the E4 allele of ApoE, suggesting an association between the ApoE4 genotype and oxygen-mediated damage in AD. We tested this hypothesis by subjecting normal and transgenic mice lacking ApoE to oxidative stress by folate deprivation and/or excess dietary iron. Brain tissue of ApoE-deficient mice displayed increased glutathione and antioxidant levels, consistent with attempts to compensate for the lack of ApoE. Folate deprivation and iron challenge individually increased glutathione and antioxidant levels in both normal and ApoE-deficient brain tissue. However, combined treatment with folate deprivation and dietary iron depleted antioxidant capacity and induced oxidative damage in ApoE-deficient brains despite increased glutathione, indicating an inability to compensate for the lack of ApoE under these conditions. These data support the hypothesis that ApoE deficiency is associated with oxidative damage, and demonstrate a combinatorial influence of genetic predisposition, dietary deficiency, and oxidative stress on oxidative damage relevant to AD.  相似文献   

16.
The aim of this study was the search of association with diabetic polyneuropathy of the polymorphic markers epsilon2/epsilon3/epsilon4 of apolipoprotein E (APOE) and I/D of apolipoprotein B (APOB) genes in groups of type 1 diabetes patients with diabetic polyneuropathy (n = 86) and without its clinical signs (n = 94). We have not found significant association with diabetic polyneuropathy (DPN) of epsilon2/epsilon3/epsilon4 marker of APOE gene. However the comparison of allele and genotype frequencies of I/D marker of APOB gene showed that the carriers of I allele and II genotype had higher risk (OR = 1.66 and 2.01, relatively; p < 0.027), whereas the carriers of D allele had lower risk of DPN (OR = 0.60; p < 0.018). Our findings show that APOB gene, encoding one of the main components of lipid metabolism system, is involved into the diabetic polyneuropathy development in type 1 diabetes mellitus.  相似文献   

17.
The epsilon 4 allele of apolipoprotein E (APOE) has been found to be a risk factor for late-onset Alzheimer's disease (AD). While the pathogenic mechanism of APOE in AD is not yet clear, APOE isoforms appear to differentially influence the aggregation of A beta, the principal component of Alzheimer-associated beta-amyloid deposits. To date, no data are available for the propensity of A beta to aggregate in the presence of APOE under conditions where these components are at physiological concentrations (in cerebrospinal fluid, APOE and A beta are approximately 100 nM and approximately 5 nM, respectively). We employed a novel in vitro filtration assay for detecting zinc(II)- and copper(II)-induced aggregation of A beta in solutions containing concentrations of the peptide that are similar to those reported for human cerebrospinal fluid. The potential for resolubilization with EDTA and the relative densities of zinc- and copper-induced A beta aggregates were also compared. Zinc-induced A beta aggregates were found to be denser and less easily resolubilized than copper-induced precipitates. Metal-induced aggregation of A beta was studied in the presence of purified apolipoprotein E2, apolipoprotein E3, and apolipoprotein E4 under conditions that approximate the physiological concentrations and ratios of these proteins. In the presence of all three APOE isoforms, zinc-induced aggregation of A beta was attenuated, while precipitation with copper was enhanced. Consistent with the increased risk for AD associated with the epsilon 4 allele of APOE, metal-induced aggregation of A beta was highest for both zinc and copper in the presence of apolipoprotein E4. Our data are consistent with a role for APOE as an in vivo molecular chaperone for A beta.  相似文献   

18.
In endothelial cells, NF-kappaB is an important intracellular signaling molecule by which changes in wall shear stress are transduced into the nucleus to initiate downstream endothelial nitric oxide synthase (NOS3) gene expression. We investigated whether NF-kappa light-chain gene enhancer in B cells 1 (NFKB1) promoter polymorphism ((-94)NFKB1 I/D, where I is the insertion allele and D is the deletion allele) was associated with 1) NOS3 gene expression in endothelial cells under physiological levels of unidirectional laminar shear stress (LSS) and 2) endothelial function in prehypertensive and stage I hypertensive individuals before and after a 6-mo supervised endurance exercise intervention. Competitive EMSAs revealed that proteins present in the nuclei of endothelial cells preferentially bound to the I allele NFKB1 promoter compared with the D allele. Reporter gene assays showed that the I allele promoter had significantly higher activity than the D allele. In agreement with these observations, homozygous II genotype cells had higher p50 expression levels than homozygous DD genotype cells. Cells with the homozygous II genotype showed a greater increase in NOS3 protein expression than did homozygous DD genotype cells under LSS. Functional experiments on volunteers confirmed higher baseline reactive hyperemic forearm blood flow, and, furthermore, the subgroup analysis revealed that DD homozygotes were significantly less prevalent in the exercise responder group compared with II and ID genotypes. We conclude that the (-94)NFKB1 I/D promoter variation contributes to the modulation of vascular function and adaptability to exercise-induced flow shear stress, most likely due to differences in NFKB1 gene transactivity.  相似文献   

19.
In groups of type 1 diabetes mellitus patients with and without clinical signs of diabetic nephropathy (n = 62 and n = 68, respectively), a search was made for associations between diabetic nephropathy and the polymorphic marker epsilon2/epsilon3/epsilon4 of apolipoprotein E gene (APOE), I/D marker of apolipoprotein B gene (APOB), and Ser447Ter marker of lipoprotein lipase-encoding gene (LPL). The risk of diabetic nephropathy was higher in the carriers of allele epsilon3 and genotype epsilon3/epsilon3 of the polymorphic marker epsilon2/epsilon3/epsilon4 of APOE gene as well as in the carriers of allele 1 and APOB genotype/gene (OR = 2.08 and 2.16; 1.91 and 2.11, respectively). Conversely, the carriers of allele D showed a reduced risk of this complication (OR = 0.52). No significant differences in distribution of alleles and genotypes of the polymorphic marker Ser447Ter of LPL gene were found between the groups. Our results indicate that the genes encoding two major components of lipid metabolism are involved in the development of diabetic nephropathy in patients with type 1 diabetes mellitus.  相似文献   

20.
Inheritance of the apolipoprotein (APO) E gene epsilon4 or epsilon2 allele alters the risk of developing Alzheimer disease (AD), while increased alpha-tocopherol (AT) intake appears to lower the risk of AD. As APOE is a major apolipoprotein in the CNS and AT in vivo is transported in lipoproteins, we tested the hypothesis that CNS lipoproteins, as modeled by relevant concentrations of high density lipoprotein (HDL), and AT would interact to suppress neurotoxicity in a cell culture model of amyloid beta (Abeta)- related toxicity. These cells conditionally express C99-derived peptides, proposed to be a key step in AD pathogenesis; this expression is closely associated with subsequent cell death. We found that physiologic concentrations of lipoproteins present in the CNS protected from C99-associated toxicity and provided evidence for two mechanisms of protection. The first was AT-independent, APOE isoform-dependent, and most potent for the APOE2 isoform. The second was a synergistic protection afforded by a combination of APOAI, or less so APOE, and AT. These data provide a novel explanation for the apparent AD-protective effect of inheriting an epsilon2 APOE allele, and suggest that optimizing AT enrichment of CNS lipoproteins or devising APOAI mimetics may augment AT efficacy in treating AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号